: 9 416
; \\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\‘ C@

e

LLEARNING AND ADAPTIVE HYBRID SYSTEMS

FOR NONLINEAR CONTROL

by
L e been 1ppxoVbd Leemon C. Baird III
ol 4 sl s Northeastern University
T 1991

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

~ MASTER OF SCIENCE IN
B”} ﬁ EC COMPUTER SCIENCE

£ TUECTE Ry

o AUG 081991 |

e at

NORTHEASTERN UNIVERSITY

E) | May, 1991

© 1991 by Leemon C. Baird I

Signature of Author Qﬁ‘“ 6 C [.ﬁu‘/
Leemon C. Baird lII
May, 1991
Approved by M l(égé%[
Walter I.. Baker
/@‘) /M chmcal Supervisor, CSDL
Accepted by \ﬁ«@ Z

Professer ¢ onald J. Williams
Thesis Supervisor

1-07263
\\\!\\\\\! \‘ TR

1
N
REPGRT DOCUMENTATION PAGE R |
f— T ; —
' | ? |
TTAGENCY UBE ORLY i a1 . REPORT DATT 3 JFOSRT TYPE NG DATRY L iviRIO 1
May_199] THESLS/DIBY BROAL BO0Y j
FaONITLS AND SUBTITLE TS EINRCT U RS ;
. . i j {
! Learning and Adaptive Hybrid Systems for i '
{ Nonlinear Control j
T AUTHOR(S) T - :
) i
Leemon C. Baird ITII, 2d Lt !
[T JERFGAMING CRGANIZATION NAME(S! AND ADDRESS(ES) 3. PEAFORMING CROANIZA [ION :
REPORT NUMBER
AFIT Student Attending: Northeastern University AFTT/CL/CLa- o1 _4sp i
t
i
}
9. SPONSORING MONITORING AGLNUY NAMEF(S) AND ADDKESS{EC) 10, SPONSCEIMG PeorITAGING]
AGENCY REPORT NUMBER
AFIT/CI
Wright-Patterson AFB OH 45433-6583
11, SUPPLENEMNTARY NOTES
12a. OISTRIBUTION AVAILABILITY STATEMENT 120 DISTRIBUTION CODE
Approved for Public Relerase IAW 190-1
Distributed Unlimited
ERNEST A. HAYGOQD, lst Lt, USAF
Executive Officer
8
13. ABSTRACT ‘Maxrrun 220 words)
i
t
|
|
i
|
i
i
1A, SUBJECT TERMS 1S NUMBER OF PAGES ;

103

16. PRiCE COOE

17 SECURITY JLASSIFICaTION 16 SECURYY CLASSIFICATION 1417 5
Ut RePORT QF THIS PAGE ! OF ABSTRACT

TULRITY O ASS Al TN I5 UMITATION CF S8, TR0

'

LEARNING AND ADAPTIVE HYBRID SYSTEMS
FOR NONLINEAR CONTROL

lLeemon C. Baird III

Submitted to the Department of Computer Science
May, 1991 in partial fulfillmen: of the requirements for the
Degree of Master of Science in Computer Science

ABSTRACT

[L V\A
1

Connectionist learning systems are function approximation systems which learn
from examples, and have received an increase in interest in rcc}em years. They have been
found useful for a number of tasks, including control of highfdimcnsiona]. nonlinear, or
poorly modeled systems. A number of approaches have been applied to this problem, such
as modeling inverse dynamics, backpropagating error through time, reinforcement
learning, and dynamic programming based algorithms. The question of integrating partial g
priori knowledge into these systeras has often been a peripheral issue.

Control systems for nonlinear plants have been explored extensively, especially
approaches based on gain schedulir,g or adaptive control. Gain scheduling is the most
commonly used, but requires extensive modeling and manual tuning, and doesn't work
well with high-dimensional, nonlinear plants, or disturbances. Adaptive control addresses
these problems, but usually can't react to spanal dependencies quickly enough to compete
with a well-designed gain scheduled system.

This thesis explores a hybrid control approach which uses a connectionist learning
system to remember spatial nonlinearities discovered by an a¢ ive controller. The
connectionist system learns to anticipate the parameters found by an indirect adaptive
controller, effectively becoming a gain scheduied controller. The combined system is then
able to exhibit some of the advantages of gain scheduled and adaptive control, without the
extensive manual tuning rcquired by iraditional methods. A method is presented for
making use of the partia! derivative information from the network. . Finally, the applicability

of second order learning methods to control is considered, and areas of future research are
suggested.

Thesis Supervisor: Dr. Ronaid J. Williams
Title: Professor of Computer Science

Thesis Supervitor: Mr. Walter L. Baker
Title: Technical Staff, CSDL

ACKNOWLEDGMENTS

1 would like to thank Walt Baker for all the discussions and brainstorming sessions,

as 'well as the freedom to pursue various ideas. He has been a great supervisor and friend,
and I'll miss working with him.

A special thanks goes to Professor Ron Williams for all the time spent discussing
connectionism and learning, giving feedback on my work, and exposing me to a whole

range of new ideas. Thanks also to Rich Sutton and Andy Barto for the stimulating
discussions.

To Pete, Dino, Carole, and J.P.: thanks for making working at Draper fun, and for
letting me learn something about what you were working on. This thesis owes much to the
fact that Jeff Alexander developed the world'; greatest simulation program. Thanks for the
long hours implementing ali those neat fzatures. And thanks to all the others who have

made my stay in Boston enjoyable, especially £d, Torsten, Mike, and my roommates John,
Kenny, and John.

Finally I would like to thank my parents for all of their love and support, and for all
that they have done for me.

This report was prepared at The Charles Stark Draper Laboratory, Inc. with support
provided by the U.S. Air Force under Contract F33615-88-C-1740. Publication of this

report does not constitute approval by the sponsoring agency of the findings or conclusions
contained herein. It is published for the exchange and stimulation of ideas.

1 hereby assigr: my copyright of this thesis to The Charles Stark Draper Laboratory,
Inc., Cambridge, Massachusetts.

S C. AT

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to
Northeasiem University to repioduce any or all of this thesis.

Mo

S -y

«

TABLE OF CONTENTS

INTRODUCTION

1.1 Motivation

1.2 Problem Description

1.3 Thesis Objectives and Overview
BACKGROUND

2.1

2.2

23

Connectionist learning systems
2.1.1 Single Layer Networks
Perceptrons
Samnuel's Checker Player
ADALINE and MADALINE
2.1.2 Multilayer Networks
Hebbian Leamning
Drive Reinforcement
Backpropagation
Traditional control
2.2.1 Bang-Bang Control
2.2.2 Proportional Control
2.2.3 PID Control
2.2.4 Adaptive Control
2.2.5 Gain Scheduled Control

Connectionist Leamning controi approaches

2.3.1 Producing given control signals

2.3.2 Following given trajectories
Learning a plant inverse
Dynamic signs

Backprpagation through a plant model

2.3.3 Optimizing given signals

o0 o0 O

10
12
13
13
13
15
17
19
19

21
22
23
24
25
26
29

31

Backpropagation through time

a3

Actor-critic systems 35

Dynamic Programming Systems 36

3 HYBRID CONTROL ARCHITECTURE 39
3.1 The Leaming component 42

3.2 The adaptive component 43

3.2.1 Time Delay Control 43

3.3 The hybrid system 44

3.4 Derivation of The hybrid With Known Control Effect 46

3.5 Derivation of The hybrid With Unknown Control Effect 48

4 LEARNING SYSTEMS USED 52
4.1 Backpropagation networks 52

4.2 Delta-bar-delta 60

S EXPERIMENTS 63
5.1 The Cart-Pole System 65

5.2 Organization of the experiments 71

5.3 Noise and nonlinear functions of control 73

5.4 Mid-trajectory Spatial Nonlinearities 17

3.5 Trajectory-End Spatial Nonlinearities 83

5.6 Trajectory-Start and Trajectory-End Nonlinearities 87

5.7 Comparison of Connectionist Networks Used 96

5.7.1 Sigmoid 96

5.7.2 Sigmoid with a Second Order method (Delta-Bar-Delta) 99

6 CONCLUSIONS AND RECOMMENDATIONS 102
6.1 Summary ard Conclusions 102

6.2 Recommendations for Future Work 103
BIBLIOGRAPHY 104

1 INTRODUCTION

1.1 MOTIVATION

The design of effective automatic control systems for nonlinear plants presents a
difficult problem. Because analytic solutions to such problems are generally unobtainable,
various approximate solution methods must be used (e.g gain scheduling). The design
problem is further complicated by modeling errors. If there are significant plant dynamics
that are not included in the design model, or if the plant dynamics change unpredictably in
time, then the closed-loop system can perform worse than expected and may even be
unstable. Furthermore, if the sensors are noisy, then filters will be required, which tend to
make the control system slow to recognize changes in the plant (from ecither unmodeled or
time-varying dynamics).

Traditional gain scheduled controllers often require extensive manual tuning to
design and develop, and do not deal well with unmadeled, high-dimensional nonlincarities,
disturbances, or slowly changing plants. Adaptive conirollers can handle these in
principle, but in practice may adapt to spatial dependencics so slowly that the controller is
not as good as a gain scheduled controller would be.

An "intelligent” controller operating in a complex environm~nt should be abie to
accommodate 2 certain degree of uncertainty {e.g., from time-varying dynamics, noise, and
disturbances). More importantly, it should be able to learn from experience to anticipaie
previously unknown, yet predictable, effects {(e.g., quasi-static nonlinzarities). A possible
solution (o ifus problem might be a hybrid adaptive / leamning control system which could

toth adapt ro disturbances and leam to anticipate spatial nonlinearities.

Various aigorithms for connectivnist learning systems are often proposed and
compared on very small "toy" problums. The error in these problems is usually defined as
the total squared error, summed over the outpus for each training exanuple. The problems
arising in learning control often do not resemble these test problems, and so it is difficult 1o
predict how various proposed modifications will affect learning controllers. The problems
in control typically involve learning functions that map continuous inputs to continuous
outputs, and these functions are generally smocth with possibly a few discontinuities. For
a control problem, the error is defined as the total squared error, integrated over the entire
domain. Leaming systems which can quickly learn to fit a function to a small number of
points may not be able to quickly learn the continuous functions arising in typical control
problems.

Another important aspect of learning controi is the order in which training examples
become available. Most proposed learning systems are tested on learning problems
involving a fixed set of training examples which are all available at the same time, and
which can be accessed in any order. In control probiems, the plant being controlled may
change its state slowly, or tend to spend large amounts of time in a sinall number of states.
This may cause the leaming system to receive a large number of similar training examples
in a row before seeing different training examples. For some leaming systems this uneven
ordering of training data may not matter. For others it may cause the system to icarn more
slowly or to forget important information. In any case, this is an aspect of leamming

controllers which must be taken into account when comparing various learning systems for

use in a controller.

1.2 PROBLEM DESCRIPTION

Sometimes a controller is required which can force a plant to follow some desired

reference trajectory. This model reference control problem is approached here using both

traditional control techniques and learning systems. The approaches explored hese do rot
require that the reference trajectory satisfy any particular constraints such as being
generated by a linear system. Itis only necessary that there be some well-defined method
for calculating at each point in time the desired rate of change of the piant state.

Few assumptions are made about the plant itself. 1" can be nonlinear, poorly
modeled, and subject to unpredictable disturbances. The sensor readings from the plant
must contain sufficient information to control it, but may be noisy and incomplete. For
example the plant may have actuator dynamics involving internal state within the actuators
that is not measured by any sensor. Specifically, it can have unkrowvn dynamics that are

functions of both state and time. The plant can have spatial dependencies, nonsinearities

primarily functions of state and either staiic or quasi-static in dme. It can also have

temporal nonlinzarisies which are primarily functions of time, caused by disturbances and
other short term, unpredictable events.

It is also important that it be possible to incorporate any a priori knowledge into the
cenwroller. This should include knowledge about both the behavior of the plant in the
absence of any control signals, and the effect of the control signals on the plant. It is
especially important that errors in the @ priori information not cripple the controller in the
long run. The controller should be able to eventuaily learn these errors and compensate for
them.

Traditional adaptive control tends to be inc fficient and perform p. orly with respect
to significant, unmodeled spatial deper:dencirs, while traditional nonadaptive control has
difficulty with both spatial dependencies and poorly modeled d; namics. The prebiem is 0
find a system that can control a plant in the presence of both simultanenusly, while

incorporatii;g incomplete and possibly errorcous a pric ri knowledge of the system.

1.3 THESIS OBJECTIVES AND OVERVIEW

The goal is to develop a hybrid controller combining an indirect adaptive control
system with a learning system. This hybrid controller should have the ability to handie
both time-varying disturbances and unmodeled spatial dependencies in the plant without
extensive manual tuning. Several different connectionist learning algorithms are compared,
using both Time Delay Control (TDC) adaptive controllers and a modified TDC.

The object of this thesis is 1o find methods for combining learning systems with
adaptive systems in order to achicve good control in the presence of both spatial and
temiporal functional dependencies. Several methods are developed for augmenting the
estimation done by indirect adapiive systems with the additional information available from
leamning systems. In addition to developing this learning augmented estimation, various
issues in the construction and use of connecctionist learning systems are explored in this
context.

Chapter 2, Backgrcund, gives some of the important concepts and historical
development of connectionist systems, control systems, and approaches to using
connectionist systems for controL

Chapter 3, Hybrid Control Architecture, covers the adaptive controller and
coanectionist networks whicu are integrated into a single hybrid controller. Both the
individual components and the final, integrated system are given, are motivated from
current problems, and are described in detail.

Chapter 4, Connectionist Leaming for Control, covers some of the difficulties with
leaming systems for control, and describes the methods used here to deal with those

difficulties.

Chapter 5, Experiments, describes the various simulations done and their results,

These results are then interpreted in relation to the original goals.

Chapter 6, Conclusions and Recommendations, summarizes what has been
accomplished, and points out areas in which future research should be focused.

The bibliography lists those works which were used in the preparation of this

thesis, together with other, related works.

2 BACKGROUND

The hybrid learning / adaptive controller combines connectionist systems with
traditional control systems, and modifies cach of these components to improve the ability of
the hybrid to combine the strengths of each. Before describing the hybrid system itself, it
is first necessary to cover some of the important developments and concepts relating to
these components. Section 2.1 covers the development of some of the important ideas in
connectionist learning systems, and section 2.2 deals with some of the common approaches
in traditional control theory. Finally section 2.3 describes some of the approaches which

have been taken to building connectionist controllers or incorporating connectionist systems
into control systems.

2.1 CONNECTICNIST LEARNING SYSTEMS

The application of connectionist learning systems to problems in control has
received considerable attention recently. Such systems, usually in the form of feedforward
multilayer networks, are appealing because they are relatively simple in form, can be used
to realize general nonlinear mappings, and can be implemented in parallel computational
hardware. An example of a simple network is shown in in figure 2.1. The network
consists of nodes and connections between nodes. A node may have several real-valued
inputs, each of which has an associated connection weight (also real-valued). Each node
computes a non'inear function of the weighted sum of its inputs, and then sends the result
out along all the connections leaving the node. Nodes are arranged in layers, with nodes in

each layer sending outputs only to nodes in subsequent layers. In such feedforward

networks, it is easy to calculate network outputs, given a set of inputs.

5 = 2"/|I|'
X3 w2 y ol
v y
X3 1+
Figure 2.1

A key feature of feedforward multilayer networks is that any piecewise smooth
function can be approximated to any desired accuracy by some arbitrarily large network
having the appropriate weights [HW89]. Given the comect weights, a network can be used
to implemeni a nonlinear function that is useful for a control application. The difficulty is
in finding the appropriate weights. No known algorithm guarantees finding satisfactory
weights for all layers of a multilayer network, rnd Minsky and Papert poiuied out in 1969
that the small networks networks which are guaranteed to converge do not scale well for
some large problems [MP69). Many saw this as an indication that connectionisz
approaches were not useful in general.

One event that helped chiange this perception was the development of the error back-
propagation algorithm, independently developed by Werbos [Wer74), Parker [Par82],
LeCun [LeC87], and Rumelhart, Hinton, and Wiiliams {(RHW86). Error back-propagation
is a gradient descent algorithm that modifies network weights incrementally to minimize a
particular measure of error. The estor is usually defined as the sum of the squared error in
the output cver the sct of inputs. The network functions are centinuously difterentiable, so

it is possible to calculate the gradient of the total error with 1espect to the weights, and ©

'Jl

adjust the veights in the direction of the negative gradient. As with all gradient descent
optimization technicues, there exists a possibility of converging to a non-optirial local
minimum. Despite this, learning systems using back-propagation have been shown to find
good solutions 1o various real world problems including difficult, highly nonlirear control
problems. No difficuldes due to the presence of local minima were cbserved in any of the
experiments that are described in this thesis.

Backpropagation and many other connertionist leaming algorithms tend to converge

slowly, and so are more useful for lcarning quasi-siatic nonlinear functions than for

adapting to rapidly changing functions.

2.1.1 Single Layer Networks

The carliest connectionist systems were single layer networks. Single layer
networks are networks which implement functions with the property that the function is a
linear combination of other functions, and only the weights in that linear combination

change during leamning. These networks tend to be less powerful, but the learning rules are

simpler, and so these architectures received the earliest attention.

Perceptrons

One of the early conncctionist network models was the simple perceptron,
developed by Rosenblatt [Ros62] in the late 50's (as discussed in [RZ86}[Sim87}).
Rosenblatt coined the term perceptron to refer to connectionist systems in general,
including those with multiple layers and feedback. He is most widely known for the
developme:it of the simple perceptron. A simple perceptron is a device which takes several
inputs, multiplies each one by an associated integer called its weight, and finds the sum of
these products. The simple perceptron has a single output, and the inputs and output are

cach 1 or 1. The output is -1 if the weighted sum of the inputs is negative, and 1 if the

sum is nonnegative.

Xf the input is thought of as a pattern and the output is a truth value, then the simpie
parceptron can be thought of as a classifier which determines whether or not inputs belong
to a given class. Given a set of input patterns along with their correct classification, it is
semetimes possible to find weights which will cause a simple perceptron to classify those
patterns correctly. Specifically, if such a set of weights exists, then Rosenblatt proved that
a very simple algorithm will always succeed in finding those weights, learning only from
presentations of inputs and their correct classifications. The algorithm simply started with
arbitrary weights, and rcpeatedly classified training examples. Whenever it got a
classification wrong, cach weight which had an effect on the result was incremented or
decremented by one, so as to make the resulting sum closer to the correct answer.
Rosenblatt's "perceptron leamning thecrem” proving this works is one of the more
influential results of his research.

It is helpful to think of the inputs as a vector representing a point in some high
dimensional space. The weighted sum of the inputs is a hyperplane in thz: space, and the
output from the simple perceptron will classify inputs based on which side of the
hyperplane they lie on. This means that a single simple perceptron is only capable of
classifying inputs into one of two linearly separable sets, sets which can be separated by a
hyperplane. Although this limits the power of a singie simple perceptron, it is still useful to
know that any such classification can be learned simply by training the simple perceptron

with examples of correct classifications.

This limitation on the power of perceptrons can be overcome if the outputs of
several simple perceptrons feed in to another simple perceptron, thus forming a muld-layer
perceptron. Rosenblatt was able to show that for any arbitrary desired classification of the
input patterns, there <xists a two layer perceptron which can act as a perfect classifier for
that mapping. Unfortunately, there is no known learning algorithm which is guaranteed to
find the correct weights for a multi-layer perceptron as there was in the case of the single-

layer perceptron. Minsky and Papert, in their 1969 book Perceptrons [MP69}, analyzed

single layer perceptrons and pointed out a number of difficulties with them. Simple
perceptrons are only able to recognize linearly separable classes, and so cannot calculate an
exclusive OR, or recognize whether the set of black bits in a picture is connected or net.
The problem remains even if the inputs to the perceptron are arbitrary functions o:” proper
subsets of the input pattern. Despite the interesting features of single-layer perceptrons,
their conclusion was that "There is no reason to suppose that any of these virtues carry over
to the many-layered version. Nevertheless, we consider it to be an important research
problem 1c ¢lucidate (or reject) out intuitive judgement that the extension is sterile” [MP69]).
Minsky later considered Perceptrons to be overkill, an undeistandable reaction to excess
hyperbole which was diverting researchers into a false path {RZ86). However ai the time,

the book was one of the factors contributing to a decrease in interest in connectionist
models in general.

Samuel's Checker Player

Another carly system was Samuel's checkers playing program [SamS59){Sam67].
This was the first program capable of playing a nontrivial game well enough 10 compete
well with humans, and it was an important system because it introduced a number of new
ideas. It used both book lookup and game wee searches, and was the first program in
which the now common procedure of alpha-beta pruning was used. It also had a leamning
component which was not referred to as a neural network or connectionist system at the
time, but which strongly resembles many such systems.

The program chose its move in checkers by searching a game tree to some depth
and picking the best move. Alpha-beta pruning and other subtleties were used to make the
search more effective, but the basic component needed to make it work was a function
which could compare the desirability of reaching one of several possible board positions.
Given an exhaustive search, this scoring function could be as simple as "choose a move

which ensures a win if possible; otherwise avoid a loss”. Since Samuel could only search

10

2 small number of moves, the scoring function was very important, and so he built it to
combinzs the best g priori knowledge he could find with additional knowledge found by the
program through learning.

The a priori knowledge which Saruel started with were functions derived from a
knowledge of what good human players consider important. For example, one function
was the number of picces each player had on the board; another was how many possible
moves the computer had available to choose between. Each of these functions were hand
built to have a good chance of teing significant, to be quick and easy to calculate, and to
return a single number instead of a vector or a symbol. The scoring function was simply a
lincar combination of each of the outputs of these functions. Samuel referred to this linear
function as a polynomial. The learning system was designed to pick which functions
would be included in the linear combination, and to pick weights for these functions.

All of the weights were initially set 1o arbitrary values. The program could then
play games against a copy of itself, where only one of the two copies would learn during a
given game. The score for a board position represented the expected outcome of the game.
If the score on the next turn was different, then the later score can be assumed to be more
accurate than the earlier score, since it is based on looking farther ahead in the game.
Therefore the weights would all be modified slightly so that the earlier score would more
nearly match the later score. The polynomial had some fixed terms never changed by
leamning, which ensured that the score of a board at the end of the game would always be
accurate, preferring wins to losses. The process described here is very similar to how the
perceptron learned, changing weights slightly on each time step so as 10 decrease error,
There were other aspects of Samuel's algorithm beyond this, such as occasionally
randomly changirg the function to escape local minima, but the core of the iearning process
was this simple hill climbing algorithm.

Although Samuel said he was avoiding the "Neural-Net Approach” in his program

by including a priori infoimation and leaming rules specific to games, the ideas which he

11

developed are similar in many ways to much later systems for multilayer networks, optimal
control, and reinforcerient learmning described below. His ideas influenced the work of
Michie and Chambers' Boxes {MC68], Sutton's Temporal Difference (TD) and Dyna
learring [Sut88){Sut90](BSW39][BS90]. Samuel's algorithm can actually be seen as &
type of incrernental dynamic programming [WRBS0].

ADALINE and MADALINE

A third system which was developed in the late 1950's was Widrow's ADALINE
and MADALINE [Wid89]. He developed a type of adaptive filter which is still in
widespread use today in such items as high speed modems. It worked by multiplying
several signals by weights, summing them, looking at the output, and then adjusting the
weights according to the errors in the output. His training data was analog and noisy and
came from changing signals, but for the most part his filters were similar to the perceptrons
or polynomial scoring functions described above. When weights were changed
proportionally 10 their effect on the error, Widrow proved that they were guaranteed to
converge. He then went on to add a squashing function to the output of one of his filters,
forcing the output to +1 or -1 on cach time step, and used it for pattern recognition. This
"Adaptive Linecar Neuron” (ADALINE) {Wid89] was then built in actual hardware, where
weights were represented by the electrical resistance of copper coated graphite rods, and
learning was accomplished by causing more copper to come out of solution and plate the
rods. When the the outputs of multiple ADALINE's were fed in to another ADALINE, this
formed what Widrow called a MADALINE (for multiple ADALINES). By doing this, he
was able to get around the problem of only learning linearly separable functions.
However, he did not have a method for training the weights that connected the first sct of

ADALINE's to the last one, so he simply fixed all the weights at a valuc of one.

12

2.1.2 Multilayer Networks

As can be seen in the above descriptions, & number of researchers were developing
very similar systems in the late 50's and early 60's, some of which generated a great deal
of excitement. The particular difficulties pointed out in perceptrons could not be overcome
as long as the output of the device was simply a function of a linear combination of the
inputs. A second layer needed to be added which would take its inputs from the outputs of
the first layer. Widrow added a second layer in the MADALINE, but couldn't train all of
the weights. The problem of multilayer learning was one of the reasons that interest in

connectionism tended to wane until its resurgence in the late 80's.
Hgbbian 1 gaming

In 1949, Hebb proposed 2 simple of model based on his studies of biological
neurons. A neuron in this model would generate an output which was some function of the
weighted sum of its inputs. Unlike the models described above, these weights would leamn
without any external training signal at all. The learning occurred according to the Hebbian
Learning Rule, which stated that the efficacy of a plastic synapse increased whenever the
synapse was active in conjunction with activity of the postsynaptic neuron. This meant that
the weight of a connection increased whenever both neurons had high outputs at

approximately the same time, and decreased when only one of them did.
Drive Reinforcement

The basic Hebbian model has beer refined in various ways over the years to
improve both its ability to model animal behavior, and its ability to perform useful
functions in systems such as controllers. One important development in this line of

research is Klopf's Drive Reinforcement model (K!088]. In this model, three major

modifications are made to the basic Hebbian model.

13

First, instead of correlating the output of one neuron with the output of another, the
correlation is made between changes in outputs. If signal levels are thought of as drives,
such as hunger, then it dees not make sense for the network to change weights merely on
the basis of the existence of these drives. However, when the a signal level changes, such
1s would happen when hunger is relieved by cating, or pain is increased due to damage
being done to an animal, then the network should change. The second ck ge is to
correlate past inputs (or changes in inputs) with current outputs {or changes in outputs).
This generally allows the network to leamn to predict, while a purely Hebbian network
would not be able to. The third change was to always modify weights proportionally to the

current weight. This causes learning to follow an S shaped curve. At first a given weight

increases slowly. It then grows more rapidly, and finaiiy slows down again and

approaches an asymptotic value. This result is more consistent with the result of

experiments 'with learning in animels,

This model has proven accurate in modeling a wide range of acrual animal leaming
experiments. For example, it is possible to simulats Paviov's results in classical
conditioning. A single neuron can be given one input representing the ringing of a bell,
and another input representing the taste of meat juice. If the output of the neuron is
interpreted as the salivation response of Pavlov's dogs, then the sysiem can be seen to
slowly become classically conditioned, learning to salivate in response to the bell withan S
shaped curved. When the meat juice stimulus is removed, it demonstrates extinction of the
response in a manner which is also realistic.

It has also been applied to control. Multiple Drive Reinforcement neurons have
been connected with other components to form controilers for traditional control problems,
as well as for the problem of finding the way through a maze to the reward at the end. This
is especially interesting in light of the fact that each individual neuron is not trying to

explicitly minimize an error, as in the other controllers discussed here.

14

Backpropagation

One of the major factors in the return of widespread interest in connectionist
systems is the development of the Error Backpropagation algorithm. The idea is simple. A
network consists of a set of inputs, a set of cutputs, and a set of nodes which calculate the
output as a function of inputs. The nodes are arranged in layers, with the inputs connecting
to the first layer and the last layer connecting to the outputs. The network is feedforward,
i.e. the complete directed graph of nodes and connections is acyclic.

Each node functions by taking each input, multiplying it by a weight, taking a
smooth, monotonic function of the sum (such as the hyperbolic tangeat), and then sending
the result along all of its outputs. If the network is presented with a set of different inputs,

it will generate an output for each one. The total squared error in the outputs, J, can then

be caiculated, and the weights w changed according to:

J =Y (fx;w) - dip

ial

Aw,-=-a-a"¥—

aw i
where:

J =total error for network with weights w
n = number of training examples
« = lcarning rate (contmiling step size)
x; = input to network for ith training example
d; = desired output from network for ith training example
f(x;,w) = actual output from network for ith training example

The change in the weight is proportional to the partial derivative. In a multilayer
network, the output of each layer is a simple function of the cutput of the layer before it.
This allows all of the partial derivatives to be calculated quickly by starting at the output of

the network and working backward according to the chain rule. Propagating errors

15

backward requires as litile computation as propagating the original signals forward.
Furthermore, the error celculations can all be done locally, in the sense that information
nced only flow back througl: the network along the connections between nodes which
already exist. These propertics combine to make Backpropagation powertul yet low in
both computation time and hardware required.

This gradient descent process is simple and works wel! for multilayer networks, but
it is not guaranteed to find the best weights possible. As with all hiil climbing methods, it
can get stuck in a local minimum. Although this methed cannot be guaranteed to find the
correct answer (as simple perceptrons were), it is still a useful method which has beea
shown t0 work well on a variety of problems. Unfortunately, pure gradient descent
methods oftcn converge slowly in the presence of troughs. If the error as a function of
network weights is thought of as a high dimensional surface, then a long, thin trough in
this surface slows convergence. If the current set of weights is a point on the side of &
trough, then the gradient will point mainly down the side cf the trough, and only slightly in
the direction along the trough toward the local minimum. If the weight changes in large
steps, it will oscillate across the trough. If it changes in small steps, then it converges to

the local minimum very slowly.

There are a number of approaches to speeding up convergence in this case. One is
to look at the second derivative in addition to the gradient at each point. If a network has
one output and multiple weights, then the second derivative is a matrix giving the second
partial derivative of the output with respzct to each possible pairs of weights. This matrix,
called the Hessian, has a useful geometric interpretation. Maultiplying a vector by this
matrix stretches the vector in some directions and compresses it in others. For the direction
in which the error surface has least curvature, the Hessian will compress vectors. For the
direction in which the error surface has greatest curvature, the Hessian will stretch vectors.
Multiplying & vector by the inverse of the Hessian has the opposite effect. Multiplying the

gradient by the inverse of the Hessian will then cause the weights to change more in the

16

d ection along a trough (vhere the curvature is small), and less across a trough (where the
curvature is large). If the network has N weights, this requires inverting an N by N matrix
on every iteration during training. This overwhelming flood of calculations may defeat the
purpose by requiring more computation than is saved by the shorter path to convergence.
This is why a number of approaches have been proposed for solving this problem, such as

using only the diagonal of this matrix, or using heuristics which approximate the effect of

the inverse Hessian,

2.2 TRADITIONAL CONTROL

Control theory deals with the problem of forcing some system, calleg the plans, 10
behave in desired manner. The relevant properties of the plant which change through time
are calied the state, and are iepresented by the real vector x. For example, in a cruise
control for a car, the state might include the current speed and slope of ground. If the siate
cannot be measured directly, then the sensor readings are representea by another real
vector, . The control action is the set of signals applied to the plant by the controller, and

is represented by the real vector, u. The plant state then evolves in time according to:

X; = f(x,,u;)
Y= g(xy)

The 1a3jority of contro} theory is devoted to the special case where the plant is

linear, in which case the state evolves according to

*‘ = Ax‘+Bu‘
yi = Cx,

where A, B, and C are constant matrices. Even if a plant is not truly linear, it is often
close enough to linear within certain regions of the state-space that a controller can be
designed for that region based on a linear approximation of the plant. This is useful since

the theory for linear plants is betier developed than for nonlinear plants {D'A88].

17

Once the plant has been modelled, the controller must be designed to accomplish
some purpoc=. If the goal is to keep the state at a certain value, then the controller is called
a regulator . 1f the goo! is w force the plant to follow a given trajectory, then the controller
is a model reference controller. If the goal is to minimize some funciion of the whole
trajectory, then it is an optimal control problem.

Traditional control techniques are based on approaches such as bang-bang,
proportional, PID, gain scheduling and adaptive control, each described in a section below.
These are important control approaches with which connectionist control techniques should
be compared. In addition to this, most of them are included, directly or indirectly, in the

hybrid system developed in this thesis.

Several of the systems described here were first demonstrated on a standard cart-

pole system. This plant is illustrated in figure 2.2.

R O N ©)

Figure 2.2 Cart-pole plant

The cart is confined to a one dimensional track, and force can be applied to it in
either direction to cause it to move left and right. On top of the cari is a pole, which is
hinged at the bouttom and can swing freely. No forces are applied to the pole directly, so it
is only influenced indirectly through forces applied to the cart. The problem of balancing
the pole is similar te the problem of balancing a broomstick on a person’s hand. This is a

standard control problem and is useful for demonstrating new control methods. a version

18

of this problem is used here to test the new control systems developed in this thesis.

2.2.1 Bang-Bang Control

The simplest form of control is a controller which only has two possible outputs.
This "bang-bang" control is commonly used in thermostats which alternate between
running the heating system full on and tuming it off completely. This type of control has
also been used in a learning system to balance a pole on a cart while keeping the cart within
a certain region [BSA83). Uniortunately, bang-bang control systems can't exercise very
fine control, and so lead to limit cycles in the plant being controlled, i.c. the state repeatedly
follows a certain path instead of settling down to a single state. A pole can actually be
balanced on 2 cart by always applying a certain force in the same direction the pole is
leaning. Naturally, this leads to the limit cycie of the pole swinging back and forth between

two extremes. For finer control, a more general controller is required, such as a
proporticnal controller.

2.2.2 Proportional Control

A proportional controller is perhaps the simplest controller imaginable that still has

continuously varying control actions. Each input to the controller is a real value,

representing one clement of the state of the plant being controlled. In a regulator, that is the
only input, and the controller tries to control the plant so that all of the elements of the state
vector are zero. In a general controller, each elemeni of the desired state vector is also an
input. The controller then multiplies each input by a constant gain, possibly adds a
constant, and uses the result as the control signal. If the control action is a vector involving
several signals, then the same process is followed for each of them, using a different set of

gains each time.

In order to design a good proportional controller, it is first necessary 10 have a good
model of the system being controlled. If the plant is linear and perfectly modeled, or even

19

if the plant is only close to linear, then it is often possible for a proportional controller to do
an acceptable job of controlling it.

2.2.3 PID Control

1f the control signal to a plant is simply proportional to the error in its state, then as
the state approaches the desired state, the correcting force will decrease proportionally.
Often, there will be some point near the desired point at which the small correcting force is
balanced by other forces, and the plant will settle into a steady state wh'~h has a slight
error. In order to overcome this steady state error, the controller might integrate the error
over a long period of time, and add a component to the control signal proportional to this
integral. It may also be possible to improve the control signal by taking into account not
only the state, but also how the state is changing. For this reason it may be useful to add a
term to the control signal proportional to the derivative of the state.

If both of these modifications are made to a proportional controller, it is then called
a proportional plus integral plus derivative (PID) controller. If the input to this controller
and the output from it are considered as functions of time and the Laplace transform of
them is taken, then the relationship between input and output is simple. It is some
quadratic function of s divided by 5. Ia discrete time control, this means that the output of
the controlier is a linear combination of four things: the output on the previous time step,
the current inputs, the inputs on the previous time step, and the inputs on the time step
before last. Since the output is at least partially proportional to the output on the previous
time step, small errors in state “an causc the output 1o keep increasing until they are gone.
This is the integral portion of the controller. Since inputs from three different time steps are
used, it is possible to subtract them and estimate how fast the inputs are changing. This is
the derivative aspect of the controller. Also, since the current inputs affect the output

directly, it has a proportional control component. Therefore all three types of control are

present, and the controller is referred to as PID.

20

PID control is very widely used; in fact perhaps 90% of all of the controllers in
existence are PID controllers {or PI or P, which are just PID with some gains zero)
{Pal83). If a plant is lincar, it is often possible to design PID controllers that give the
desired performance. If a plant is nonlinear, but will usually stay in one smali region of
state-space, then it is often practical to approximate the plant with a linear model in that
region and design a PID controller for that model. This modei can be derived from the full,

nonlinear equations describing a plant, by taking the derivative of those equations, and

evaluating it at a given point in the middle of the region of interest.

2.2.4 Adaptive Centrol

Instead of creating a fixed controiler based on a priori knowledge of a plant, it is
sometimes beneficial to build a controller which can change if the plant is different than the
model, or if the plant changes or experiences disturbances. Starting in the early 1950's,
researchers enthusiastically pursued adaptive control, especially for aircraft, but without
much underlying theory. Interest then diminished in the early 1960's duc 1o a lack of
theory and a disaster in a flight 1est [As:83]. More recently, adaptive control is finally
beginning to emerge as a widely used approach.

Adaptive conirol can be categorized as cither indirect adaptive control or direct
adantive control. Indirect adaptive control utilizes an explicit model of the plant, which is
updated periodically, to synthesize new contrel laws. This approach has the important
advantage that powerful design methods (including optimal control techniques) may be
used on-line; however, it has the key disadvantage that on-line model identification is
required. Alternatively, direct adaptive control does not iely upon an explicit piant model,
and thus avoids the need to perform mcdel identification. Instead, the control law is
adjusted directly, based on the observed behavior of the plant. In either case, the cor 'roller

will adapt if the plan: dynamics change by a significant degree.

Adaptive controllers are usually designed with the assumption that the plant being

21

controlled may be poorly modelled, but is at least known to be lincar. The controller itself
is also limited :0 being linear at any point in time, but the "constants"” in the controller
change slowly over time as it adapts. Even with all of these assumptions of lincarity, the
entire system consisting of hoth an adaptive controller and a plant is not linear vhile the
parameters are adapting. This has made it very difficult to prove that these controllers are
stable, although recent progress has been made in this area (Ast83).

Adaptive contro} systems generally exhibit some delay while they are adjusting,
particularly when noisy sensors are used (since filtering creates additional delay). If the
characteristics of the plant vary considerably over iis operating envelope (e.g., due to
nonlinearity), the controller designed for a linear plant can end up spending a la}ge
perceniage of its time in a "partially” adapted state, leading to degraded performance.The

control system has to readapt every time a new regime of the operating envelope is entered.

2.2.5 Gain Scheduled Control

A very nonlinear system could be controlled by an adaptive controller which adjusts
to the new dynamics in each region of the state-space. Instead, most modem control
systems handle nonlinearities with gain scheduled controllers. These controllers are
collections of simple proportional controllers. one for each region of state-space. For
cxample, in a typical compiex control s sstem, the state vector might include 30 clements,
three of which are special. When these three are kept constant, a simple, linear control law
can work well. The commands sent to the actuators can be a d:t product of the state vector
and a gain vector. When any of the threr special elements change though, a new lincar
con'rol law with new gains must be used. In ¢ gain scheduled controller, the space of all
possible values for those three state vector elements is divided up irto verhaps 300 regions.
Each region then uses a different set of gains, and a scheduler is used to smoothly
transition whenever the state moves from one region 1o another. The drawback to this

approach is tha. it requires a good model of the plant, as well as large amcunts of heuristic,

22

aand tuned, calculations in order 1o guess where the boundaries between regions should
be, and what the control law in each region is. Once the controller is built, it canrot change
to accommodate a slowly changing plant, such as a robot where bearings wear and parts
age. This control technique does respond instantly, though, when it enters a new region,
while the adaptive controller would have to wait for more information before it could adapt

to a new region, so gain scheduled control is generally used instead of adaptive control in

most complex systems today.
2.3 CONNECTIONIST LEARNING CONTROL APPROACHES

A number of different approaches have been suggested for using connectionist
sysiems in control [Fu86){Bar89]. These systems generally try to solve one of three
control preblems: producing given control signals, following given trajectories, or
optimizing given reinforcement or cost signals. For each of these problems there are one or

more different approaches which have been tried, the most common of which are described
beiow.

23

2.3.1 Producing given control signals

State
Commanded
Contro! State

1 Controller Plant

>
State

4
ConnecgiOnist
» Network
Figure 2.3

The simplest use of a connectionist network in a control application is 1o emulate an
existing controuer. Thus is shown in figure 2.3. The controller and the network are both
told the current state and the state commanded (the state to which the controller should drive
the plant). The controller then calculates an appropriate control signal by sore means, and
the network also calculates a control signai. If they differ, the difference is the error in the
network's output and is then used to train the network (shown by the diagonal line through
the network). In the figure shown, the network has no effect on the behavior of the
system, it is simply a passive observer. Once the network has learned, the weights in the
network would be frozen, and the controller would be completely removed from che
diagram and replaced by the network. One early network, Widrow's ADALINE in the

1960's, was trained to balance a pole on a cart by watching a human do it, and learning

from that example [Wid89]. Almost any general supervised learning or functicn

24

approximation system can be used to control a system in this manner, although the
technique is obviousty limited to systems where a control system already exists. This
appro: h might actually be useful in situations where it would be too expensive or 0o
dangerous to have a human controlling a system, but where a network could tx used fairly
cheaply. It would also be useful if it couid be trained by example how to control in certain
states, and then could generalize 1o other states. These are unlikely to be very common
uses of such a system.

A more widely applicable use may be as a component of a larger control system
which learns to reprnduce the resuits of the other components. For example, a control
algorithm may require an extensive tree search on each time step which takes too long to
implement in real-time, even in hardware, If it is possible to train a network to implement

the sarme mapping from state 1o outputs, then the network could replace the slow controller.

2.3.2 Following given trajectories

A much more common contrel problem is that of following known trajectories. If
the plan: being controlled is fairly well understocd, and if it is not very nonlinear, then it is
often possible to specify a trajectory for the plant which is known to be both useful and
achievable. For example, if a robot arm is told to move from its current position to 2 new
position, the ideal behavior might be for it to instantancously move to that position, and
completely stop moving as soon as it reaches it. This, unfortunately, requires the
application of infinite force to the aim. On the other hand, it requires very little force to
move the arm to the new position quickly but with a large amount of overshoot and
oscillation once it gets there, or to move it to the positicn slowly but with little overshoot.
There is a wrade-off between force applied, time to get 1o the correct position, and time o
settle once it is there. The exact nature of the trade-off depends on the particular equations
governing the arm. Often, through partial models of the plant, trial and error, and

experience with similar plants, it is possible for a control engincer to choose a particular

25

trajectory for the anm which is achievable and which gives acceptable behavior for the
particular application.

Chogsing the reference trajectory may or may not be difficult in a given situation,
but it is extremely important. If the reference trajectory is less demanding than necessary
{causing the state to approach the desired state very slowly and allowing a large amount of
overshoot), then the system will not perform as well as it could with a better controller. If
the reference trajectory is too demanding (causing the state to approach the desired state
rapidly with little overshoot), then the controller wiil attempt to use control actions outside
the range of what is possible, and the system may become unstable.

Qnce such a reference trajectory has been found, then the controller must simply act
at each point in time so as to m. ve the plant along that reference trajectory. Three
approaches for using connectionist systems in "model reference” control problems have

been explored: learning a plant inverse, dynamic signs, and Backpropagation through a
learned model.

Leaai lant
State
Commanded Exploring Control Plant State
» Controller >
State

Current

Plant Inyéise
State
> Nefvork -

Ne
State
Control -
O—;& Control
Figure 2.4
26

State

Commanded
Trained Plant Control Plant State
- Inverse] an
State Network
Desired Next State
Reference
e Do
Figure 2.5

A conceptually simple approach to model refererice control is to use a network to
learn a plant inverse. In a deterministic plant, the state of the plant on a given time step is a
function of both the state and control action on the previous time step. Alternatvely, in
continuous time, the rate of change of state at a given point in time is a function of the state
and control action at that point in time. An inverse of this function with respect to the
control signal is a useful function to know. Given the current state and the desired next
state (or desired rate of change of state), an inverse gives the control action required. If a
network can learn such an inverse then it can calculate the control actions on each time step
which will cause the plant to follow a desired trajectory.

Figure 2.4 illustrates how a network is trained to leamn the plant inverse. First,
some kind of exploring controller is used to drive the plant. This may not be a very good
controller; in fact it could even behave randomly. Its purpose is simply to exercise the plant
and show examples of various actions being performed in various states. The network
then takes two inputs: the plant's state at the current time and the plant's state on the
previous time step. The output of the network is then its estimate of the control action
which caused the plant to make the transition from one state to the other. This estimaie is

then compared to the actual command to generate the error signal used to train the network.

21

Figure 2.5 shows how the network is uscd after it has leamed. Given the current
state of the plant and the desired next state (as specified by the reference trajectory), the
network generates a control action to move the plant to that new state. If the next state of
the plant does not match the desired state perfectly, then this error could be used to continue
training the network. In this way, the network could iearn to control a plant whose
dynamics gradually change over a long period of time.

A fundamental problem with learning the inverse of the plant is the network’s
behavior when the plant does not have a unique inverse. Most network architectures, when
trained to give two different outputs for the same input, will respond by learning to give an
output which is the average of the training values. For example, if 2 plant at a particular
state can be forced to act in the desired way by giving a control signal of either 1 or 3, the
network will usually learn an output of 2 for that state, which may be a far worse action
than either 1 or 3.

If the plant is a stochastic system, then the result of a single action will be an entire
probability distribution function, which further complicates the problem of learmning either

the forward or inverse model, and of choosing the best action. These problems often limit

the usefulness of leaming plant inverses.

28

Dynamic signs

State \

Commanded

troller Control Plant Slate
, —
- Network

\ Multiply by

Dynamic Signs ~ [*%-

State

Reference

p s

s

Desired Next State + -

Figure 2.6

A learning cystem using dynamic signs is shown in figure 2.6. For a given siate,
the network tries to find an action which will drive the plant 1o the next state on the
trajectory defined by the reference. If it does this, then the new state will equal the output
of the reference, and ths subtraction will yield zero ervor, so no leaming will occur. Cin the
other hand, if there is an errcr in the state, then each weight in the network should be
adjusted proportionally to its effect on that error. Finding the effect of a given weight on
the control signal is easy; it is simply the partial derivative of the control with respect to that
weight. In order to find its effect on the plant’s state, however, it is necessary to know the
pariial derivative of the state of the plant with respect to the controi signal.

Often the general behavior of a plant is known, even though all the exact equations
and constants are not known. For example, it is often clear that applying more control
action will cause one element of the state to increase and another one to decrease, even
though it is not possible to predict exactly how much change will occur. In this case, the
partial derivative of state with respect tc control is no: known, but the sign of the partial

derivative is known. If the actval partial derivatives were known, then the error in state

wouid be multiplied by the derivative before being used to train the network. Since only
the sign of the derivative is assumed known, cach element of the error is merely multiplied
by plus or minus one. Figure 2.6 shows how the error in the state is multiplied by this
value before being nsed to train the network. This "dynamic sign” has been shown in
some cases to contain enough information to cause the network to converge on a reasonable
controller [FGG90]. It has been shown {GFI0}[BF90] that for autonomous submarine

control with a mu'tidimensional state vector and a scalar control, the system can leamn to be

an effective controller using dynamic signs.

Backpropagation through a plant ynodel

State
Commanded \

- EB?‘W\ Contro! o Stats
- Network N Bre- ant
“~
State i NG
L af ™~ ~Riant Model 17 !
- Network~ . . .
B Reference R
S ,». t N
Desired Next State + -
Figure 2.7

A more general approach than dynamic signs is for one network to act as a
controller while a second network learns to model the plant. On =ach time step, the second
network takes the current state and control actions as input, and tries to predict what the
charge in state wili be, adjusting its parameters according to the. error in its prediction. If
the second network is Gifferentiabic everywhere, which is the case in networks which use
backpropagation, then when it learns the model, it will also know all of the partiats

derivatives for the plant. This then ailows errors in the state to be backpropagated through

both networks in order to change the parameters of the first network so that it can learn to
control the plant incdel. ‘This is the same as the dynamic signs approach described above,
except that the partial derivatives across the plant are estimated automatically instead of
being set to plus or minus one by hand accerding to a priori information.

Figure 2.7 illustrates this process. The network on the right is trained to predict
what the next state of the plant will be, given the current state and control. This training is
indicated by the solid diagonal arrow through the network. At the same time, the network
on the left is trained to be a better controler. This is done by propagating the error in state
through both networks, while only changing weights in the controller network. Although
this signal propagates through the plant model network, it is not used to train that network,

which is why it is represented in the diagram by a dotted arrow. This approach has been
successfully used by Jordan {Jor88).

2.3.3 Optimizing given signals

The above techniques are all bas:d on the assumption that there is a reference
trajectory to follow. At each time step, given the current state, it is assumed that the desired
change in state is xnown. For some systems though, finding a reference trajectory is fully
as difficult as finding the controller in the first place. For example, a large semi truck
consists of two sections with a hinge between them. If the truck is near a loading dock and
at an angle to it, it can be difficult to calculate how to back up the truck so that it ends up

with the back end lined up with the dock [NW89]. This procedure may involve turning the

wheel all the way to the left, backing up some, then gradually tuming ii to the right, then
finally straightening it out, causing the truck to follow an S shaped path. if the path to
follow is known, it is trivial to calculate how to turn the wheel to follow the path, but
finding the correct path in the first place is a difficult problern. The model reference
systems discusscd above are therefore not useful for solving this type of problem. In this,

case, the goal is actually to minimize a quantity after 2 certain period of time (the distance

~

31

-__—___________________‘__—---—-——-J

from the dock at the end), rather than to follow a given trajactory.

This is just one example of the most general type of control problem, which is the
optimization of some quantity over ime. This is called “Reinforcement Learning” since the
goal of the controller is to maximize some external reinforcement signal over time {Wil38].
Since several actions may be performed before the reinforcement is received, it is often
difficult to determine which of the actions were good and which were bad. This "temporal
credit assignment problem” makes reinforcement learning the most difficult type of problem
considered here. Control problems of this type include backing up a truck to minimize the
error at the end, finding the route to the moon which requires the least fuel, or finding the
actions for an animal which maximize the amount of food it finds. All of these cases
involve maximizing a reinforcement (or m. mizing a cost) over some period of dime (finite
or infinite). This is a difficult problem, since it may be necessary to do actions which are
worse in the short run, but are better in the long run. If a controiler generates some action
and then receives negative reinforcement (or positive cost), it is not clear whether that is
immediate resuit of that action or the delayed result of a much earlier action. Thus it is not
clear how to leam: the correct action, or even how to evaluaie a given action.

This difficult control problem has been addressed by Backpropagation through
time, actor-critic systems, and dynamic prograrrining systems. Actor-critic systems and
dynamic progranming systems tend to be broad categories with some overlap, but are a

useful way of classifying the many approaches to this type of problem.

2

State
Commanded > Exploring Contro! Plant State
| Controller >
State

| »{ Plaxt Model
Network

Figure 2.8

One way to sclve this problem is to extend the idea of backpropagating through a
plant model. Two networks are used. One is trained every time step to learn to model the
plant. Figure 2.8 shows how the network can leamn to model the plant using the current

state, the previous state, and the previcus control action.

State
Commanded

Controller Control Plant Model State

. Network — > Network
“s?art
\ :

Figure 2.9

33

Once it has learned, the other network can leam to be a controller based on the plant
model. The two networks are connected as shown in figure 2.9. With all parameters
fixed, the plant model starts at some initial position, and the controller network controls it
for a pericd of time which is known to be Jong enough to get the plant into the correct
position (alternatively, it controls it until it tries to leave the boundaries of the area which

the plant must stay within, or it simply controls it for a long pericd of time). All of the

signals going through the networks are recorded during this trial.

Initial state Stale commanded State commanded
commanded attime 1 attime N
Convolic: | TModetNe Contioller T ™ IModeine | ©©© Controtier ModeiNe
—-—-TI— Neatworik twork Notwork twork ..’— Potwork twork
N L——» I——
Initial State €late at State at

time 1 time N
Figure 2.10

The two networks are then unrolled in time, so that it looks like the signals have
passed through a very long networx once, instead of passing through two small networks
many times. The cost or reinforcement signals are calculated from the plant model state at
certain time steps of the unrolled network. In the case of the truck backer-upper [NW89],
this signal is zero on every time step until the end, and then is equal to the error in state
after the last time step. This error can be backpropagated through the large network to
change all of the parameters, thus changing the controller t¢ be slightly better throughout
the whole trial. This "backpropagation through time" has been shown to be able to solve

the problem of backing up a truck [NW89]. It is related to ideas suggested by Werbos

(Wer89] and work done by Jordan [Jor88]' and Jameson [Jam9%0] where signals are
propagated back through time during training.

Backpropagation through time does have the difficulty. unfortunately, of requiring
that cvery signal on every time step for one trial be saved. For long trials this could be a
problem. Other algorithms could be used instead, such as the Williams Zipser aigorithma
for training recurrent netwerks [WZ89]. This has memory and processing require: .ents
independent of the length of the trial, but proportionai io the cube of the number of nodes

(assuming fi"ly interconnected nodes), so it can also be impractical for large networks.

Actor-critic systems

Backpropagation through time is a potentially very useful technique, but is still not
cempletely general. Even assuming the aetworks can perfectly medel the functions they
are trained with, the result will sull be a controller whick causes the plant tc follow a locally
optimal path. The path will be such that any smail change to it will make it worse, but a
large change to the path as a whole could still improve it significantly. The
backpropagation through time algorithm also requires storing all of the signals going
through the network throughout the whole trial. In a regulator problem, where the the plant
may never fail and may never reach the goal state exactly, the trial will be infinitely long.
An alternative approach that avoids some of these difficulties is to use a system with two
components, called an "actor™ and a “critic”. The actor is the actual controller which, given
the state, decides which control actions should be used. The critic is a component which
receives extemal reinforcement signals and uses them to train the ator. This is a difficult
problem, since reinforcement may come long after the actions which caused it. In fact, the
best actions may actuaily increase errors before they start 1o decrease them, and the cuitic
must recognize that this is the case. For example, for the cart balancing a pole, if the cart
starts at the onigin with the pole balanced, and the goal is to move one meter tc the right, the

reinforcement on cach time step might be the negative of the position error. The fastest

35

way 1o move the systern one meter 1o the right without allow'ng the pole to fall over, is to
first move feft, causing the pele 1o ilt 1o the right, then move quickly to the right. Thaus the
error in position should increase before it decreases. If the actor is to learn the conuol
actions which will accomplish this, the critic must first leam to recognize that this is
desirable. It will have (0 leam that a large position ercor with the pole tilted the right way is
preferable to a smaller position error with "€ pole t 'ted the wrong way.

Samuel's checker player {Sam59] was one of tue earlicst systems to take this
approach. The actor was an algorithin which switc’: »d between book playing and an a, ha-
betz t:ee search. The search was based on the relative desirability of various board
positions, as decided by the critic. The critic was a linear combinztion of several hand-built
heuristic functions, and learning for the critic consisted of adjusting the weights of the
linear combination, and also deciding which of a large number of heuristic functions should
be included in the combination.

Michie ana Chambers [MC68] developed the Boxes system which consisted of an
actor and a simple critic They applied their controlier to a cart pole system which would
signal a failure whenever the pole fell over. The critic based its evaluation of a state on the
number of time steps between entering that state and failure.. This system was later
improved by Barto, Sutton, and Anderson [BSA83] with the development of the
Associative Search Element (ASE) and Adaptive Critic Element (ACE). In that system, the
critic based its evalvation on boh the time until failure and the change in evaluation over
time. Evaluations were therefore predicting both the ¢esirability of a given state, and an

estimate of what the evaluations would be in future s:ates. This system leamed to balance a

pole on a cart more quickly than the Boxes system.

Dynamic Programiming Systems

Dynamic programming is a class of mathematical rechniques for solving

optimization problems. Often the sets of possible states and actions are finite. The

36

problem is to 1ind the best control action in each state, taking into account that it may be

profitable to perform actions with low reinforcement (or high cost) in one state in order 1o
reach another state which gives high reinforcement (or low cost). Not only is 4 suggested
action learned for each state, but typically one or more other values are associated with it as
well.
The most common formulation of dynamic programming associates two values

with each state. A “policy" is the action which is currently considered to be the best for a

given state. An "evaluation” of a state is an estimate of the long term reinforcement or cost
which will be experienced if optima actions are performed, starting in that state. All of the
policies and evaluations are initialized to some set of values, and then individual values are
improved in soime order. A given policy or evaluation is improved by setting it equal to the
value which would be appropriate for it if the values of its neighbors were correct. If this
process is done repeatedly to policies and evaluations in all the regions, then under certain
circumstances it is guaranteed to converge to the optimal solution (WB90). The set of
policies function somewhat as an actor, while the set of evaluations function as a critic.
Reinforcement learning with actor-Critic systems may therefore secmetimes be thought of as
a kind of dynamic programming.

Other types of dynamic programming systems do ot resemble actor-critic systems.
Q learning, devised by Watkins [Wat89], only involves one type of value. For each
possible action in each possible state, a number (the "Q value”) is stored which represents
the expected long term results if that action is performed in that state followed by optimal
actions thereafter. Asin the other forms of dynamic programming, a Q value is updated by
changing it to be c'oser 10 the value that would te appropriate for it if the Q values of all its
neighbors were assumed to be correct. Q leamning is also guaranteced under certain
assumptions to converge to the optimal answer.
The above discussion assumed that the sets of possible states and actions were

finite. If there is a continuum of states and actions, then an anproximation to dynamic.

37

programming must be used. The most common approximation is to divide the state-space
into small regions, and store evaluation and policy values for ¢ach region. If the state-
space is very high dimensional, this will require prohibitively many values to be stored,
and dynamic programming will not useful. A natural solution to this "curse of
dimensionality” is to use some form of function approximation system to storc the
evaluation and policy for the entire continuum of states. Connectionist systems would be a
natural candidate for this use.

This section has described systems for solving the problems of emulating a given
controller, following a given trajectory, and optimizing a given signal. None of the
systems described here make use of much a priori knowledge of the plant. Often fairly
good models of a plant may exist, and it would be useful to have some method for quickly
integrating this knowledge into the controller . The systems described here also tend to

react very slowly to changes in the plant, since the network must leam a new fuaction

whenever the plant changes. These are the problems which this thesis addresses.

3 HYBRID CONTROL ARCHITECTURE

The architecture presented here represents a new method of integrating learning and
adaptation in a synergistic arrangement, forming a single hybrid control system. The
adaptive portion of the controller provides real-time adaptation to time-varying dynamics
and distarbances, as well as any unknown dynamics. The leaming portion deals with static
or very slowly changing spatial dependencies. The latter includes any aspect of the plant
dynainics that varies predictably with the current state of the plant and the control action
applied.

A conventional adaptive control system reacts to discrepancies between the desired
and observed behaviors of the plant to achieve a desired closed-loop system performance.
These discrepancies may arise from time-varying dynamics, disturbances, sensor noise, or
unmodeled dynamics. The problem of sensor noise is usvally addressed with filters, while
adaptive control is used to handle the remaining sources of observed discrepancies. In
practice, little can be done in advance for time-varying dynamics and disturbances; the
contro! system must simply wait for these to occur and then react. On the other hand,
unmodeled dynamics that are purely functions of state can be predicted from previous
experience. This is the task given the learning system. Initiaily, ail unmodeled dynamics
are handied by the adaptive system; eventually, however, the learning system is able to
anticipate previously experienced unmodeled dynamics!. Thus, the adaptive system is free
to react to time-varying dynamics and disturbances, and is not burdened with the task of

reacting to predictable, unmodeled dynamics.

The hybrid adaptive / learning system accornmodates both temporal and spatial

IThis assumes, of course, that the order of the. plant (dimension of its state vector) is accurately known,

39

modeling uncertaintics. The adaptive part has a temporal emphasis; its objective is to
maintain the desired closed-loop behavior in the face of disturbances and dynamics that are
time-varying or appear to be tirne-varying (e.g., a change in behavior due to a change in
operating conditions). The ieaming part has a spatial emphasis; its objective is to facilitaie
the development of the desired closed-loop behavior in the presence of unmodeled
nonlinearities in the state-space. Typically, the adaptive part has relatively fast dynamics,
while the learning part has relatively slow dyramics. The hybrid approach allows each

mechanism to focus on the part of the overall control problem for which it is best suited, as

summarized in Tabie 3.1.

Adaptation Leamning
reactive: constructional:
maintain desired ynthesize desired

losed-loop behavior [closed-loop behavior

mporal emphasis jspatial emphasis

c memory = mory =

anticipation ticipation

ast dynamics [slow dynamics

ocal optimization jglobal optimization
real-nme adaptation esign & on-line
(time-varying ning

ynamics) spatial nonlinearities)

Table 3.1 Adaptation vs. lcarning.

A schematic of one possible realization of a hybiid adaptive / learning control

system is shown in Figure 3.1,

COMIAMID
——eee INDIRECT CONTROL
ADAPTIVE PLANT -
»{ CONTROL SYSTEM
ANTICIPATED POSTERION 1
BEHAVIOR ESTIMATE '
OUTPUT/STATE
!
LEARNING
SYSTEM o

Figure 3.1 Hybrid adaptive /leaming controller.

To simplify the discussion, we assume that all necessary plant state variables are
observable and measured; in the event that this is not the case, a state observer would have
to be used. The indirect adaptive controller outputs a confrol action based upon the current
state, the desired state, and the estimated model of the system being controlled. This
estimate characterizes the current dynamical behavior of the plant. If the behavior of the
plant changes, the estimator within the adaptive controller will update the model. If plant
changes are unpredictable, then the estimator will attempt to update the model as quickly as
possible, based on the information available in the (possibly noisy) sensor readings.
Adapting to predictable model errors that are functions of state will take just as long as
adapting to unpredictable disturbances and temporal changes, assuming similar roiss

levels.

This problem is handled by the learning system in the outer loop. It monitors the

indirect adaptive controller’s posterior estimate of the plant parameters, and learns to
associate each peint in the state-space with the appropriate plant parameters at that point.

The leamning system can then anticipate plant behavior based on past experience, and give

its prediction to the indirect adaptive controller. This allows the controller to anticipate

predictable dynamics while still adapting to unpredictable dynamics.

The leaming system used here is a feedforward multilayer network. The input is
the current state, and the output is a prediction of what the plant parameters should be.
Prior to learning, the network is initialized so that the the hybrid controller will give the
same control signals that the adaptive controller would give by itself. When the network
has correctly learned the mapping, the hybrid adaptive / learning controller will anticipate
nonlinear model errors which are functions of state and are predictable, and will respond
faster than a simple adaptive controller would. If these structural nonlinearities change,
then the hybrid will act as an adaptive controller until it learns the new mapping. The entire
system is automatic; no explicit switching criterion is needed io go from adapting to
leaming.

Any type of connectionist network can be used for the leaming system, it need only
have the ability to learn functions from examples. This part of the system could even be
some other form of associative memory such as a lookup tabie or a nearest neighbor
classifier. In practice, though, these types of techniques may be impractical since a
potentially infinite number of example points are used for training, and the state-space may

have a very high number of dimensions. For this reason, a connectionist network scems

more appropriate.

3.1 THE LEARNING COMPONENT

The hybrid architecture allows any learning system to be used which can learn to
approximate a function from a large set of examples of that function. The first learning
system examined here was a feedforward, Backpropagation, sigmoid network. The inputs
to the network and the outputs from the network were scaled to vary over a range of unit
width. The trairing examples were siored in a large buffer, and were presented to the

network in a random order. The network was trained incrementally; weights were

42

changed after ¢ach training example was presented.

The network was then tried with Dela-Bar-Delta, a heuristic method which
approximates the effect of using the Hessian to scale the weight changes. A medified
version of Delta-Bar-Delta was then tried, comparing two traces with different time

constants,

The learning sysiems, and the reasons behind their choice for this application, are

described in further detail in chapter 4.

3.2 THE ADAPTIVE COMPONENT

The adaptive component of a hybrid controller can be any indirect adaptive
controller which can incorporate outside information. The controller might for example
estimate pararneters of the plant, and thea act as the best controller for those parameters. it
might instead estimate the amount of error in its predictions of state on the next step, and
try to compensate for it. For the experiments done here, an indirect adaptive controlier

which estimates such errors was used, both in its original form and with modifications.

3.2.1 Time Delay Control

A system called the Time Delay Centroller (TDC) was chosen as the adaptive
controller for the experiments presented here. TDC is an indirect adaptive controller
developed by Youcef-Toumi and Osamu [Y190).

This systern works by looking at the difference between the current state of the
plant and the state of the plant on the previous time-step. This difference, along with
knowledge of what action was chosen on the previcus time-step, is used to estimate the
effect that the unmodeled dynamics are having on the system. This value, H, is calculated
explicitly and plays a pivotal role in the next calculations. The control action is then

modified fo cancel these unwanted effects and to insert the desired dynamics into the plant.

43

The technique uses information that is only one time-step old, so it is able to react to
sudden changes in the plant or environment after a single time-step. Of course, since it is
in cffect differentiating the state, it is sensitive to high frequency noise. Youcef-Toumi
points out that this is not as bad as it seems if the ptant itself acts as a low-pass filter,
attenuating the effect of the noise in the control actions.

The cosntroller can also be made less sensitive to very high frequency noise by
simply using a larger time-step and a filter. This, howewer causes it to react more slowly to

changes in the plant. Overall, TDC doces a good job, but it cannot both react quickly and

remain insensitive to high frequency roise.

3.3 THE HYBRID SYSTEM

The connectionist network used in the hybrid adaptive / learning controller is a
simple, feedforward, back-propagation network, with two hidden layers of ten nodes each.
Given the state and goal for the plant, the network is trained to cutput the unmodeled
dynamics H. In the absence of noise, this should be the same H that TDC calculates. If
noise is present, it may be possible to determine the current state of the plant to within a
small error. The correct H, however, is difficult to calculate precisely, because it is found
by "differentiating” the state (¢.g. using a backwards difference).

One property of connectionist networks is useful here. During training a network is
given input and desired output values repeatedly. If it is given conflicting desired Gutputs
for the same input, then it tends to average them. This means that the network can be
trained with data that has small, zero mean noise and still learn the same function.
Thevefore, if TDC caiculates noisy H's with an equal probability of the value being too
high or 100 low for a given state, and if these are used to train the network, then the

network will tend to learn the correct H for each state.

The network is not only usefal when H is noisy; it is also helpful when it s used to

4

predict H. In this case, TDC looks at the state of the plant before and after a given time-
step. Back-differencing 10 estimate the derivative, TDC can now calculate the unmodeled
dynamics H during that period. That H is then used to calculatc the appropriate control
action to be applied to the plant during the next time-step. This is a source of error in the
controller, since it is always sending out control actions based on what was correct on the
previous time period. With the network, there is a simple selution to this problem. Instead
of associating H# with the current state during training, it is associated with the previcus
state. After the network has been trained with those patterns, it should be able to predict,
given a state, what H will be during the time-step following that siate. This allows a better
estimate to be calculated.

The hybrid controller, therefore, has at least the potential to solve both of the
difficulties with the original adaptive controller. This is in addition to the main problem it
was designed to solve: learning control. These considerations provide motivation for
experimenting with the hybrid controiler.

The hybrid adaptive / learning controller typically runs at a speed somewhere
between 30 Hz and 50 Hz. At these rates, the states and H do not change much over &
period of several time-steps. If the network is trained on similar states several times in a
row, it may forget wha't it knows about other states. One solution might be to train the
network less frequently, such as once a second. This might be effective, but it would slow
down learning by not leaming every tizne-step. A better solution is to use a random buffer.
During training, as the plant wanders through the state-space, the data from each time-step
is stored in the buffer. One point is also chosen at random from the buffer on each time-

step, and is used to train the network. This ensures that the network is trained cn a well

distributed set of points.

3.4 DERIVATION OF THE HYBRID WITH KNOWN CONTROL EFFECT

The original TDC equations were designed to allow the incorporation of a priori
information consisting of a linear model of the plant. The effect of contrel action on state
was assumed to be known perfectly, but the other parameters could iuitially be incorrect.
The following is a derivation cof the TDC equations for a discrete time plant where the
known dynamics are given by the a priori knowledge ® and T, as well as the knowledge
gained by the leaming system, ¥. As in the original TDC, the effect of control on state is

assumed to be a linear function, and the constant I' is assumed to be known without any

€I10T,

Assume ihat the plant being controlled is of the form

x(k+1) = Ox(K) + Tuck) + ¥ x(k) + h(x(k) &) (1)

where at time k, x is the state vector, u 1s the control vector, all of the unknown dynamics

are represented by the function h,

The 1eference trajectory has the dynamics
Km(k+1) = Doxp(k) + Tor(x) @

where 7 is the command vector. The error between the actual state and the reference state is
r(k} = xp(k) — x(k) 3

The goal is to build a controller that wil' cause the ervor to behave as;

e(k+1) = (O +K Je(k))

where K is the error feedback matrix. By using a nonzero K it is possible 10 make the

46

desired dynamics faster whenever the plant drifts off of the reference trajectory, thus

forcing it back to that trajectory. If K is zero, then the behavior will be the same except that

small errors in the state will accumalate over tirmne.

Substituting (3) into the left side of (4), then substituting (2) into the result and

solving for x(k+1) gives the desired next state:

Xn(k+1) = x(k+1) = (O +K]e(k)
Doxn (&) + Cr(k) — x(k+1) = {P+K)e(k)
x(k+1) = DX (k) + Trr (k) — (Pt K Je(k) (3)

Setting (1) and (5) equal and solving for u gives the control law which should be

followed in order to achieve the desired next state.
Ox(k) + IM'u(k) + Yx(k)) + h(x(k),k) = Opxpk) + Tpr(k) - {On+K)e(k) (6)
u(k) = I ®nxm(k) + Tk (k) ~ {On+K)ek) - Ox(k) - ¥(x(k) - hx® b] D

where, for a matrix M, M+ = (MTM)-!MT is the pseudo-inverse of M. The only unknown

in (7) is h. If h changes slowly, then it can be approximated by its previous value.

Solving (1) for h and then applying this approximation yields:

h(x(k),k) = x(k+1) — ®x(k) - Tu(k) - ¥(x(k)) ®)
h(x(k),k) = x(k) - ®x(k-1) - Tu(k-1) - ¥(x(k-1)) ®

Substituting the approximation (9) into equation (7) gives the final control iaw

u(k) = ' {®nra(k) + Tar(k) - (Gm+KYek) - Ox(k) - ¥ (x(k)) (10)
~x(k) + Ox(k-1) + Tuk-1) + ¥(x(k-1)))

The controller will adapt to a sudden change in the plant dynamics within 1 tire

step. If the time step is short, the controller will respond faster, but will also be more
sensitive to neise.

3.5 DERIVATIONCFTHE HYE ID WITH UNKNOWN CONTROL EFFECT

It is often the case that the exact effect of control on state is only partially known,

just as the dynamics of the state are only partially knowa. If a learning system can learn the

unmodeled dynamics, then the partial derivative of the learned function, ¥, with respect to

control action, u, will represent the unmodeled effect of control on state, and can be used

to improve the a priori estimate of this value, I. The following is a derivation of the hybrid

system, incorporating these partial derivatives as an improvement over the approach in
section 3.4.

Assume that a plant has the following dynamics:

x(k+1) = Dx(k) + Fuk) + P(x(k), uk)) + h(x(k),uk).k))

where the vector x(k) is the state at time k, the vector u is the control, the matrices ® and I
and the function ¥ are the known dynamiics, and the function h is all of the unknowns,
including unmodeled dynamics, nonlinearities as a function of state or control action, and
time varying disturbances.

The reference trajectory has the dynamics

Xm(k+1) = Opx (k) + Tpr(k) (12)

where r is the command vector giving the state to which the plant should be driven. The

error between the actual state and the reference state is

e(k) = Xm(k) - x(k)

(13)

and the goal is to build & controller which will cause the error to d=crease according to:

e(k+)) = (D, ,+K)e(k) (i4)

Substituting (13) into the left side of (14, substituting (12) into the result of that,

and then solving for x(%+1) gives the desired state on the next time step.

x(k+1) = O Xpn(k) + Ty (k) - (G +K Je(k) (15)

All known dynamics not defined by @ and I are represented by the function W,
This can be learned or stored in any manner which allows the calcalation of the partial
derivatives with respect to u. When calculating the u for a given time step, it will be
necessary to take in to account the fact that ¥ may affect the next state differently according
to which u is chosen. Figure 2.2 illustrates how ‘¥ car be approximated by evaluating it at
the current statc and previous control action, then forming a line through that point with the

appropriate ‘slcpce in the u direction. Equation (16) shows this approximation
mathematically.

49

W(x(k).u(k)
Y(x(k)uk-1)

Wx(k-1)u(k-1) g

Fignre 3.2 Approximation of ¥ as a function of u(k) for the current value ~f x.

Y (x(k), a(k)) = ¥(x(k), utk-1)) + {u(k)-u(k-1)) ?’ (16)
uwhk(t), w(k-1)

Substituting (16) into (11) gives a more useful formulation of the plant dynamics.
x(k+1) =Ox(k) + Tu(k) + Y(x(k), u(k-1))

+ (u(k)-u(k-1)) aa;ﬂ_(k) o(k-1) + 15k, x (k),u(k)) an

If the function h representing disturbances eic. is changing siowly, then it can be

approximated by solving for h in (17) for the previous time step, and using thai as the

approximation of h for the current time step.

ek x(k),uk)) = h(k-1,x(k-1),u(k-1))
h(kx(k).u(k)) = x(k) - Dx(k-1) - Tuk-1) - W(x(k-1), u(k-2)) (18)

oY
- {ulk-1) - u(k-2
{uk-1) - u()15‘71\(151), u(k-2)

Substituting (18) into (17) and solving for u(k) gives the control law in terms of the

desired next state x(k+1),

oY * a\g;
k) = 1"*—{ k-1) 19
v (dulx(ky, u(k—l)) [U()a“ x(k), uk~1) (19

—@x(k) ~ W{x(k), u(k-1)) + x(k+1)

= X(k) + Ox(k-1) + Tuk-1) + Wxk-1), u(k-2))
¥
k1) - u(k--2)} =
+{u) “()} au (k--]). u(k—?)}

Substituting the desired next stats (15) into (19) yields the fina! control law;

o¥ ¥ ¥
k) ={T k-1;
u (%Lm,u(k—l)) ["(’E‘Lm.u(k-n 20)

—-®Ox(k) - Y(x(k), ulk-1)) + D () + Tr(k) - (Om+K)e(k)
- x{k) + Ox(k-1) + Du(k~1) + Y (x(k-1), u(k-2))

+ {uk-1) - u(k-2)) éi{‘L }
du (k-1), u{k-2)

51

i omE T

4 LEARNING SYSTEMS USED

The leyming component of the hybrid is responsible for leaming the function which
the adapiive controller discovers a posteriori. Because the function is defined over a
continuum of states, and can involve large numbers of dimensicns, connectionist sysiems
were chosen for the leamming component. First a standard Backpropagation network was
used, as descnbed in the next section, then lincar gaussian networks and Delta-Bar-Delta

learning were added, as described in the following iwo sections, to increase leaming speed.

4.1 BACKPROPAGATION NETWORKS

During the operation of an indirect adaptive controller, certain parameters are
estimated on each time step, and the controller uses these to choose an appropriate control
action. Either on the next time step, or soon thereafter, the controller may have additional
information about what the estimates should have been earlier. It is natural to coasider
whether a learning system of some sort could leamn to map the earlier state o lzater,
improved estimates, and so be able 10 make even better estimates the next time that state is
entered. This is simply a functior approximation problem.

The function being learned wonld output parameters as a function of state. The
parameters and the state may be high dimensional vectors, and the function being leared
may be need to be generated on the basis of a large number of training points generated by
the indirect adaptive controller. In this case, a BackTropagaiion network would seem to be
a good model for learriing the functions involved. For any given function and desired

accuracy, a network can ve found which will learn that function 10 the desired accuracy

[(HW89]. This is true for networks built from any of 2 wide range of functions.

52

‘There are a number of considerations which arise wher trying to apply
Backpropagation neiworks to learning functions in this context. First, the data used to train
the neiwork comes from a controller controlling an actual plant. In this case, the training
data will consists of states and the appropriate parameters which should be associated with
themn. The state used for training will always be a recent state of the plant, and since the
siate of a plant may not change much on each time step, the training data during a given
period of time will all tend to come from one region of the state-space. This is cven more
applicable in the case of a regulator. Tn a regulator, the controller tries to keep the plant
near a certain state all the time. If the controller is doing a good job and there are no large
disturbances, the state of the plant will stay near where it should be. This means that no
training points will be generated in other regions. Even in a model reference problem, the
plant may still move slowly through state-space. Therefore it is important to consider the
ability of a given learning system to leam despite repeated exposure to very similar training
patterrs for long periods of tirne.

Buckpropagation, and most of its variante, all try to adjust the wei shts to follow
sorne gradient and decrease crror, as described in chapter 2. The error being minimized, /,
is frequently defined as the mean squared error between the network output and the desired

value of its output, summed over all possible inputs:

!
b= Y fxw) - Gfxiw) - dj)
jz?
aJ
A‘W.‘ = -0 é;;‘;
where:

J = Totai error for network with weight vector w

n = nurnber of training examples

X; = input {3 network for ith training exarople

d; = desired output of network for ith training example
fix;;w) = actual output of network for ith training example

This implies that the rietwork is be updated by epock learning, where weights are

changed once per epoch (pass through all the training examples). However, for the

function approximation being done here, the function being learned is continuous. Even if

X is only a two element vector, the envor becomes

¢
J = J (xiw) - di)(f(riw) - di) dxy dxy
Xy /X3

This requires sumrming over an infinite number of training examples, which takes
infinite time, just to find the error associated with a single set of weights. The common
approximation in this case is to use incremental learning. in incremental learning, the
weights are adjusted a small arount after each presentation of training example. The
change is made in the direction of the gradient of the error associated with only that one
example. If the changes are small compared to the time it takes to see all of the inputs, then
incremental learning will tend to give the same answer that epoch leaming would.

Suppose, for example, that increasing a given weight would increase the error for
one third of the training examples and decrease it an equal amount for two thirds of the
training examples; in this case the correct action would be to increase that weight. If
training examples are presented in a random order, then on each presentation, there will be
a one third probability that the weight will decrease and a two thirds probability that it will
increase. In the Jong run, the weight takes a random walk which tends to increase it as it
should. 1If, however, many training points are presented in a row which all have similar
inputs and outputs, then their partial derivatives will tend to be similar, and they will all
iend to move the weights in the same direction. The net effect of this is to cause the
network io learn the function in that region extremely well, at the expense of forgetting any
information it had already learned about other regions. This phenomenon is referred to
here as fixation. One simple method to avoid fixation is to use a buffer to hold many of the

training points. Then on each time step a training point can be drawn at random, and used

io train the network. This scrambling of the training points helps avoid fixation, but it may

require a large memory to hold all of the data.

Another characteristic of Backpropagation is that it tends 1o learn slowly. There are
a number of reasons for this, some of which are clearer when the learning problem is
visualized geometrically. The connectionist network contains a finite number of reai-valued
weights. This weight vector determines the behavior of the network, and so the error is a
function of this weight vector. The error can be visualized as a multi-dimensional surface
(or manifold) in a space with one more dimension than the number of components of the
weight vector. A given weight vector corresponds to a single point on this error surface.
The height of the error surface corresponds to the mean squared error associated with that
vector. If there is only one training point, there will be an error surface associated with it.
If there are several training points, there is an error surface associated with each of them,
and the sum of all thosz functions gives the total error surface. When a given training point
is presented to the network, it is possible to find the partial derivative of the error for that
point with respect to cach weight. This gradient corresponds to the direction of steepest
descent for the individual error surface associated with that training example. The sum of
all the individual gradients gives the gradient for the total error surface.

The goal of learning, then, is to follow the gradient of the total error surface,
charging the weights so as to move downhill to a local minimum in that suiface. If a
certain region of that surface is shaped like a trough, then repeated steps in ihe direction of
the gradient will tend to oscillate across the bottom of the rough, and not move very fast in
the direction of the gentle slope along the trough. If large steps are taken, then it is possible
10 leave the trough entirely, perhaps then reaching an undesirable plateau. If small steps are
taken, then the weight vector will take reasonable steps across the trough, but will move
too slowly along the trough. Such troughs may therefore slow down convergence of
gradient descent, and so slow the learning process in a Backpropagation network.

Not only do troughs slow down learning, but they are also very common and easily

formed. Consider a surface which has a number of roughly circular depressions. If the

55

surface is stretched a hundredfold along one axis, there will then be a large number of
troughs paralle! to that axis. In the error surface for a network, each weight is one axis.
Therefore simply multiplying a weight by a large constant (and back propagating through
that constant appropriately) can create troughs in weight space. Similarly, if one of the
inputs to a network varies over a much wider range than another, troughs will tend to form.
To avoid the scaling problem for inputs to the network, all experiments for this thesis were
done with all inputs and outputs to and from networks scaled to vary over a range of unit
width.

An obvious solution to the problem of troughs wouid be to look at both the first and
second derivative for the current weight vector. Instead of simply calculating the gradient
of the error surface at a point, the curvature at that point could also be calculated. Since the
gradicnt changes rapidly across the trough, the curvature in that direction would be large,
and small steps in that direction would be appropriate. Since the gradient changes slowly
along the trough, the curvature is low in that direction, and it would be safe to take larger
steps in that direction. Thus if the step size in each direction is decreased in proportion to
the curvature in that direction, then the modified gradient descent will tend to head more
dircctly towards the local minimum, and can reach it in less time with fewer oscillations. If
the ough is actually a very long, thin ellipsoid (i.e., a perfect quadratic function), then
dividing by the second derivative could allow the local minimum to be reached in a single
step.

Figure 4.1 illustrates a trough with a dot representing the current weight vector.
The arrow pointing to the right is the gradient, which points mainly across the trough and
only slightly along the trough. Taking discrete steps along this gradient can cause
oscillation, and could even leave the trough entirely if the steps are too large. The arrow

pointing to the left is the gradient divided by the curvature of the surface. i points directly

toward the local minimum, and is a better path to follow for fast convergence.

\ ==
N

Figure 4.1, A weight vector on the side of a trough,
the gradient (right arrow) and gradient divided by curvature (left arrow)

For a multi-dimensional su:face, the slope is a vector of first derivatives (the
gradient) and the curvature is a matrix of second derivatives (the Hessian). If there are N
weights, then the Hessian will be a N by N matrix, and its eigenvectors vll point in the
directions of maximum curvature. The eigenvalues correspond to the curvature in those
directions. If it was useful to multiply the step size in a direction by the curvature in that
direction, then the gradient couid simply be multiplied by the Hessian. Unfortunately, the

desired operation is 10 divide the step size Ly the curvature. This is equivalent to

multiplying the gradient by the inverse of the Hessian:

Aw = -G H-!?

G, = 3% = gradient

9% .
Hj = -8_;'—.5;; = Hessian

J = total error
This involves inverting an N by N matrix on each step! This procedure may be
computationally expensive, so numerous approximations and heuristics have been
proposed to accomplish the samie thing.
: Computation time is not the only difficulty with using the Hessian. Implementing
the above equations requires the calculation of the total error and its derivatives. But for
continuous function approximation, these are integrals over an infinite number of points.
On each time step, the error, gradient, and curvature can only be calculated for one of these
_' points.
: This was also the case when simply following the gradient, but the problem was
less severe then. If & small step is repeatedly taken in the direction of the gradient
associated with a randoraly chosen inpui, then over time the weight vector will follow a
. random walk in the direction of the truc gradient. This is effective if the steps taken are
: small, and gradually get even smalier over time. Now consider calculating the Hessian on
each rime siep, based only on the derivatives for the current training example. The second
derivatives for one exampl: may be small, even it the sum or them over all the examples is
large. The weight vecior would therefore take lzrge steps when it should be taking smail
steps.
In the case of a network with only one weight, this problem can b scen

algebraically. The comrert step size is the total gradient divided by the total curvature, If the

steps taken are simply the individual slopes divided by individual curvatures, then the

answer is completely wrong:

——

s
v

where:

L

}

O

=

s; = slope (first derivative)
¢; = curvature {second derivative)

The left side is correci. The step size should be the total slope divided by the total
curvature. The right side is incorrect. It is not useful to look at each individual training
point and divide its individual slope by its curvature. In the equation on the left, a small ¢;
has almost no effect, whereas on the right it has a very large effect. When learning
continuous functions, the summations above are actually integrals over infirite sets of
points. If weights are changed after each pass through all the training data, then this whole
problem does not arise. It is only a problem in incremental training where the weights are
changed after each individual error is found. When learning functions over continuous
input spaces, the Hessian being inverted should actually be the sum of uncountably many
Hessians. If it is simply the sum of the last few Hessians instead, then other problems
arise since it is representing the curvature at the weight vector from scveral time steps
previous instead of the current weight vecto:. The more time steps the Hessian averages
over (for more accuracy), the greater the danger that it is no longer meaningful. Itisnota
theoretical necessity that second order methods such as this are more useful for infinice
training scts being trained incrementaily, ever if the calculations can be done cheaply.

Furthermore, the very nature of self-modifying step sizes may make the network more

susceptibie to fixation if the training points aren't picked in 2 perfectly random manner.

4.2 DELTA-BAR-DELTA

Backpropagation has been modified in a number of ways by different researchers as
a means of speeding convergence during leamming. These modifications are generally
compared with Backpropagation on toy problems with small training sets. The Delta-Bar-
Delta algorithm, a heuristic method method developed by Jacobs [Jac88), is one such
attempt at improving the rate of convergence. It has been shewn by Jacobs and confirmed
in other work done at Draper that this method sometimes allows faster learning than other
more common heuristics, on problems invelving smail training sets. Testing it on the
learning problem here allows a more realistic comparison on a more “real world" problem
involving infinite noisy training sets, and learning discontinuous functions. One of the
goals of this thesis is the determination of the applicability of methods such as this to
learning systems for control.

Delta-Bar-Delta is a heuristic approximation to the effects of the main diagonal of
the Hessian matrix, i.¢. the second partial derivaiive of the error with respect to each
individual weight with respect to itself. Delta-Bar-Delta maintains a local leamning rate for
each weight, which is heuristic approximation of this second derivative. The equations

governing Delta-Bar-Delta [Jac88] can be written as:

w(t) = w(t=1) + (1) &)

. V@O
X = dw(r)

&) = (1-6)5(r) + 6 &e-1)

-1 +k if &-1)80)>0
&) = {(1-0) e(-1) if &r-1)&e)<0
&t-1) if &-1)81)=0

Where:
w(r) = a weight in the network

€(1) = local learning rate for the weight
&1) = the element of the gradient associated with the weight
3(:) = weighted average of recent &

J(1) = total error in the network (e.g. sum of squared error over ali inputs)

6,d .k = constants controlling rate of learn'ng

After each epoch (pass through all the tr ining examples), the partia! derivative of
error with respect to each weight is calculated ard multiplied by the local learning rate, and
t < weight is changed by that amount. If the current weight vector is in a trough parallel to
one of the axes, this can be determined by *he f ict that the sign of the gradient in one
direction keeps charging, v ‘le the sign of the gr .dient in ancther direction stays the same.
The sise { the gradient will therefore oftr n dif er from the sign of the average of recent
gradie.. Onr.e this is noticed, the loc il I:amir g rate in the direction of the changing sign
is decreased, and the rate in the dire. tion of * 1e constant sign is increased. This has the
effect of +.owing down wastefu! m.: ver cnt across the trough, and speeds up movement
along the trough. If the trough is aiigned at a 45 degree angle to all the axes instead 0!
parallel to one, then the signs of 71! the gradients will be constantly chznging, and the
w .ight vector takes small steps n the direction indicated by Backpropagation. This is
unfortunate, but to compensate for this would require additional storage and computation
time proportional i~ the square > the number of weights.

In order to sec whether ine sign of the gradient is changing, Delta-Bar-Delta keeps
track of two things: the curre it gradient and an exponentially weighted sum of recent |
gradients. If these two have the same sign, then the local learning rate is increased,

otherwise it is decreased. There was one final heuristic: whe . the local learning rate is

raised, it is increased linearly by adding a constant on each time step. When it is lowered,

it is decreased exporentially by dividing it on each time step by a constant. Thus the

learning rate falls more quickly than it rises, and ;o when the nature if the error surface
changes ofien, the weights will tend to change too slowly rather than too quickly, and
previously ‘earned information will be in less danger of being erased by momentarily large
learning rates. The exponential decreasing also has the advantage of preventing a local

learning rate from ever becoming zero or going negative, either of which would prevent

correct operation of the algorithm.

5 EXPERIMENTS

In the experiments presented here, a number of different combinations of hybirid
control system components are tested. Two variations of an adaptive controller ase use,
based on Time Delay Control {YI90]. Either the reduced canonical form of the plan: is
used, causing all the interesting dynamics to be compressed into a single scalar (described
below in section 5.1), or the full state i used. The learning component can learn
unmodeled dynamics as a functior of state, or as a function of state and control actien.
When it is a function of control action, then the derivative of unmodeled dynamics with
respect to control action is calculated, giving an improvzd estimzte of the effect of control
on state. Finally, the learning systein can be constrained to learn only functions whose
partials derivatives with respect to control action are constant (e.g. the control enters
lincarly).

These various controllers are then compared controlling a simulated plant with both
spatial and temporal nonlinearities. The controller should leam to control the plant in the
presence of spatial nonlinearities wherever they occur. As the plant moves from one state
to ancther, the unmodeled nonlinearitics may appear in different ways. Firsy, they might
apply driefly in the middle of the traasition from one region of state-space to ancther. If the
effect is short lived, then it will have a minimal impact on the trajectory of the plant. Also,
once the plant leaves the region where the nonlinearity ha: an effect, it will have time to
recover ard move back towards the desired trajectory.

A more severe problem occurs if the nonlincarity appears and then stays present
even after the state of the plant reaches the desired value. In this case, the nonlinearity has
more tine to affect the trajeciory, and the plant never leaves its influence long enough to

recover. If the nonlinearity is present throughout the plant’s trajectory, then the problem is

63

even more difficult. All three types of spatial nonlinearities are considered in the
experiments below.

Finally, the accuracy of the final controller is nat the only issue to be considered.
Since it is a learning system, it is also important to consider how fast it can leamn, and how
susceptible it is to forgetting one region while exploring another. These issues are
examined by the expcriments in the last section, below.

This chapter first describes the plant used for the simulations. The matrices are then
denved for that plant, and the experirnental results are presented for the hybrid system in
various configurations. Finally the Delta-Bar-Delta algorithm is compared with the
standard Backpropagation algorithm, and ihen a modified Deita-Bar-Delta is compared.

Al of the erperiments below used a cart-pole plant being sirnulated at S0Hz (vsing
Euler integration), and a controller running at 10Hz. The cart-pole system is shown figures
S.1 and 5.2. The a priori knowledge of the plant was based on a linearized model of the
flat regions of the track. The 30 degree tilt in the region between 1 and 2 mneters was
completely unmodeled and had to be either adapted to or leamed.

Unless otherwise noted, the learning system in all the experiments below wac a
Backpropagation, sigmoid, 2 hidden iayer network, with 10 nodes in each hidden layer.
Connections were made from the inputs to the first layer, from ihe first layer to the second,
and from the second to the outputs. There were also connections from the first hidden
layer to the outputs. The inputs consisted of the four elements of state: (1-9»’5 '9). The
network was trained using the un.zodeled dynamics calculated by the adaptive Time Delay
Controller, while moving the cart to a new random position in the range 0 to 3 me.1ers every
4 seconds. Tn the case of the reauced canonical form contreller, the training was based on

moving the cart from 0 to 3 meters and back every 4 seconds.

8.1 THE CART-POLE SYSTEM

The plant used for the simulations is based on a standard inveried penduium
system. The problem is to move the cart to some desired track position by applying force
dlirectly to the cart center of mass, while at the same time balancing a pole that is attached to

the cart via a hinge.
)

5+

lul € 10N

ONENOrat
-~ X

Figure 5.1 The cart-pole system

The design of an effective automatic control system for the cart-pole object on the
split-level track is & challengin 3 problem. The dynamical behavior of the nominal cart-pole
system has the foilowing attrib -tes:

¢ nonlinear

* open-loop unstable

< nonminimum phase

* 4 state variables: (x,6,x ,E'?)

The equations of motion for this plant are:

65

(me+ my)isec e + mplBcos(6- a) — myl@ sin(- &) ~ (m, + mYgsive = f— pesgns

%m‘,115+ mpliXsec acos(8-~ @) - mpglsinf = - u,0

x = position of the cart (m)

6 = pole angle (rad)

a = 26[rad incline angle

g = 98m/s? acceleraiion due to gravity
m, = 1.0kg mass of cart

m, = 0.1kg mass of pole

I = 05m pole half-length

uo = 00005 N friction beiween cart and track

Mp = 0.000002 N-m-s friction between pole and cart

Ifi € 100N force applied to cart

‘When the rack angle is zero (horizontal track), both the equations of motion and the

plant parameters are identical to those in [BB90] and [BSA83]. To test the learning ability

of the system, one pertion of the track is set on an incline, as shown in figure 5.2.

Figure 5.2

From the origin to 1 m, the track is level. From 1 o 2 m, the track slopes down
at a 30 degree anglc towards the 2 m mark. From 2 m 1o 3 m the track is level again. The
controller is given no a pricri knowledge ot the inclination of the track. It must adapt
every time it reaches the incline, unless it eventually learns to anticipate it.

TDC allows g priori knowledge to be incorporated into the controller. Here, the
a prior! knowledge is a model fored by linearizing the actual plant equations about the
origin, on the flat part of tne track. Assuming smali pole angles (6 << 1) and a horizontal
track (o = 0), the equations-of-motion may be lincarized, and the 1 aplace transform of
them taken to yieid a simple trarsfer funciion between force and position:

X(s) - (s -3.8360)(s + 3.536™M
Fis) 52(s-3.9739)(s + 3.9739)

The open-loop poles ard zeros (the values of s where the above function is infinite or zero,
respectively) are shown in Figure 5.3. The pole in the right half plane causes it to be
unstabie: when left 16 itself, the pole on the cart generally falls. The zero in the right half
plane causes it i0 be nonminimom phase: in order to move the cart to the right when the

pole is vertical, it is first necessary to move it a sinall amount to the left..

?

> Sy ¥ T X | 1 AV N
i.0 4.0

4.0 3.0 -2.0 -1.0 2.0 3.0

Figure 5.3 Open-loop poles and zeros in the complex plane.

This lincarized model is incorrent both in the tilted region of track and when the pole

angle is arge,

Taking the partial derivatives ¢f the plant equations of motion and evatuating them

at the origin yields a linear model of the piant. This model is of the form:

67

0 0 10000 O
A<| 0 0 0 10000
0 -07178 0 0
| 0 157917 0 0
0
0
B =
0.9756
| -1.4634

where the state vector x ==("9»i '9). The A matrix says that pole and cart position is the
integral of velocity, and that pole and cart velocity are proportional to pole position. The B
matrix says that the force applied to the plant affects the pole and cart velocity. It is often
more convenient to do a chanye of variables in the above equation to put it into reduced
controller canonical form. This form is found by first taking the original equations:

X = Ax + Bu
y=Cx

where y is the state being controlled. C could be the identity vector, but for the plant being
controlled here, C is the vector {1 0 0 0). This mweans that although all four . A change of
variables is then introduced by substituting T-1x for x and rearranging the first equation to

gt

x =TAT 'x + TBu
y=T"1Cx

These new equations are then treated as a new plant, with the A mairix of the new
plant being TAT-1 of the old plant, and the B matrix of the new plant is the TB matrix of
the old plant. The new plant is equivalent to the original one since varying u will have the

same effect on y as in the original plant. The purpose of this change of variables is to

convert the A and B matrices to this m¢ ¢ convenient form:

y = C cx
C 0 1 0 0
| o 0 1 0
Ac 0 0 0 1
L o 0 157917 O

0
B, = g C.=1[-143561 0 09756 0]

L

This is reduced controller canonical form because of 3 properties: the B¢ matrix is

all zeros with a 1 at the bottom, the A matrix without its first column and last row is the
identity matrix, and the first column of the A matrix is all zeros except possibly for the
bottom position. The bottorn row of the A, matrix could have been anything, and it would
still have been in canonical form. For the x vector in this new canonical form, the first
element is the integral of the second, the second element is the integral of the third, the third
elernent is the integral of the fourth, and the last element is a linear function of all elements.
The control action u only affects the fourth element of the state. This form is convenient
because the pseudo-inverse of B¢ will exist, and any errors in the A matrix will all be on
the bottom row, so unmodeled dynamics of the system are now a scalar instead of a vector.
The learning system will therefore only have to leamn a scalar cutput instead of a four
element vector cutput.

The only complicated part of the above transformation was choosing T-1. This can
be done in MATLAB with the following code:

d = poly(A)

Tinv = ctrb(A,B) * hankel(d (length(d) - 1 : -1 : 1))

where, if A is n by n, then d is a row vector with n+! elements. The function poly(A)

returns the coefficients of the characteristic equation of A, which is the polynomial formed

by the determinant of (AI - A). The expression "d (length(d) - %1 : -1 : 1)*

69

removes the first element of d, the lowest order coefficient, and reverses the remaining

clements. The function hankel returns an n by n matrix that has its first column equal to

this list and all zeros below the first anti-diagonal. Each element of the matrix equals the

element one below and to the left of it. Finally, crb returns the n by n controllability test

matrix (a row of columns) formed from the n by n matrix A and the n by 1 vector by:
crb(AB) =B AB AZB A .. A™IB]

In discrete time, the full system is approximated by:

X+l =@ x¢ + T ug

At 50 Hz:)
1.000 -0.0001 0.02 0 _g.%z
Gen = 0 10032 0 0.0200 [eo | —0:0003
30 0 -00144 1 -0.0001 S0=1 0.0195
IO i 0 03162 0 1.003 | -0.0293]
t z:)
1.000 -0.0036 0.1000 -0.0001 0.0049]
@0 = 0 1.0800 0 01027] 4= 00074
0 -0.0737 1.0000 -0.0036 0.0977
| 0 1.6211 0 1.0800 L —0.1502]

The behavior of the reference model, in discrete time, is given by:

Xpel =D xx + T ug

At 50 Hz:
1.0002 0.0048 00204 0.0012) " 0.0002]
Guee | 00003 09958 -00005 0.0182 0.0003
M0=1 00184 04712 10343 01201 Tmso=) oo
| -0.0276 -0.4129 -0.0515 0.8226] | 0.0276
At 10 Hz: - 3
1.0038 01077 01072 0.0276) ~0.0038
| 00058 09108 00109 0.0606] Tyyo= 0.0058
M10 = 0.0654 20162 11249 0.5176 —0.0654
| -0.1012 -1.5989 -0.1931 0.2770, L 0.1012

The desired error dynamics, K, s zero. This means that, given the plant's state at
time k, the desired state for the plant at time k+1 will always be equal to the state that the

reference model would have at time k+1 if it started at the state where the plant is at time £.

In other words, for a given commanded state, there will be a set of almost parallel

trajectories through state-space, which are the paths that the reference model would take.
At any given point in time, the desired dynamics for the plant is to simply follow the path
which it is currently on. If K was greater than zero, then the desired dynamics of the plant
would be faster than the dynamics « f the reference model. The controller would actually

maintain a reference model internals; On the Jirst time step, the state of the reference

would be set to the state of the of *he plant. n each time <tep thereafter, the reference

model would be updatea ac.. rding to the reference dyi. mics. & the piant state matched the
reference state, the desired next si ite of e plant would be equal to the desire next state of
the reference. if the plant ever jot off of the ref ~:nce path, 2 it wouid not start
foliowing a new 1 "~re ¢ path, but would ins.ad ¢ < 10 g 1 hack ‘the « sigzinal path

This integrating kind 1 bel 1vior acts to keep vmall mmors . oot v fro - building up

over time. Although added co. plexity of a nonz v K is wever 1sed 11 =

L0 dimets
presented here, it would be easy (0 add the tenms fo7 (. . 7 ato he hvbr o troller.
I« fact, the equations derived above explicitly sontain th: terms tur K, eve u, Uy are

never used here,
5.2 ORGANIZATION Ok 118 X%~ MENTS

The cat-pole v «ckis levelen yw . 7 except uvetween the poiiisa meter and 2
meters. The 30 c-gree aclinein this reg. w is 3 fa *, unmodeled nonl: :e. -ity, and so is a

more diffic .t re, - for the "onuulier . "ess i ¢ learning component is working well.

Vher the .art ta= at 0 meters and is tol to move 0 3 1nete <, and ¢ he complicated
m e avening ardac. leraionw s do. ear the siart: od end of the trajectory, both of
whicn are on the w- 1-modeled level part of the track. This traj: -tory is therefore easier for
the adaptive co: v ule” than weov g from 00 8 10 1. meters, where it would have to cross

the border of tie -on.inearity almost i:nn--diately and wouid then have to siop on the

incline nicar the ed ze. The following s¢ #. are organized around trajectories of differing

71

difficulty: nonlinearities in the middle, at the end, or ai the start, middle and end.

In all experimenits, the inclined portion of the track is between the 1 and 2 meter
mark. Section 5.4 shows results for the cart moving from O meters to 3 meters. Section
5.5 shows results for the trajectory from O to 1.3. Section 5.6 shows results when going
from 0.8 to 1.3, and also for going from 1.3 to 1.9,

The networks were trained from data generated as the cari was commanded every 4
seconds 10 move 10 a r.ew random position between 0 meters and 3 meters. The graphs
show the performance of the hybrid over a 9 second period, afier the learning had already
converged. Two networks are compared: the reduced network, leaming the scalar
unmodcled dynamics associated with the reduced canonical form, and the full network,
leaming the vector vnmodecled dynamics as a function of state and u.

In sections 5.4, 5.5, and 5.6, the full controlier uses the partial denvative
information froan a network which is constrained to have an output calculated as a general
nonlinear functon of x, and & constant, linear function of u. This network was used
throughout becaus« it was found to give better performance than a network calculating
outputs as a general function of x and 4. For the >ake of comparison, one run of the
gener ' network is shown in section 5.3. There is also one run shown in section 5.2 for
extretaely noisy sensors, which is included to demonstrate that both of the hybrid
controllers continue to wovk :nder extremely noisy conditons.

The results arc showr throughout in a constant format. The position graphs show
the position of the reference cart on the track in meters, as well as the position of the carts
controiled by the full and reduced hybrid controller. The other ty] ¢ of graph shows the
error in position (reference minus actual) in meters, and the force applied. The force is

scaled by a factor of ten, so that the range of the graph corresponds to the full £10N range
of legal forces applied to the cart-pole.

12

5.3 NOISE AND NONLINEAQ FUNCTIONS OF CONTROL

The following three sections show systematic testing of the two best hybrid
architectures found. This section, for the saks of comparison, shaows one run with a worse
hybrid architecture, ard one run with the best architectures in an unreasonably noisy
environment.

Figures 5.4, 5.5, and 5.6 show the results for the hybrid controllers in an
unreasonably noisy environment. On each time step, zero-mean, Gaussian noise was
added to each sensor reading. For each element of state, the noise had a variance equal to
10% of the total range that the element normally varies over while following that trajectory.
In practice, if an actual system had sensors that noisy, they would be fiitered by a separate

algorithm, but it is interesting to note that the hybrid is so insensitive to the noise that it still

performs well.

4 K :
E
- :
8 %
reference
: full hybrid :
T e reduced hybrid :
-1 :
o 1 2 3 4 § 6 7 8 9
Time (sec)
§ Figure £.4 Hybrid with 10% variance noise, cart position plot
1 ~ T

Normaiized Conirol Action, Cant T-acking Error (m)

O8]l Ceme e wWnowe --e.-
' , ; * reduced hybrd [0.0,3.0] (m)
: : ; ' eontrol action
Do ~king error
1 R = . ' ' ; ‘
0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 5.5 Reduced hybrid with 104% variance noise, force and position error

74

e
]

o
o

...................

full hybrid [0.0,3.0] (m}
control action
------ tracking error

Normalized Controt Action, Cart Tracking Error {m)
o

5 6 7 8 9
Time (sec)

Figure 5.6 Fuli hybrid with 10% variance noise, force and position error

Both hybrid systems did extremely well. The full hybrid was slightly better than
the reduced hybrid, and it applied more force to accomplish it. The performance difference
was probably mainly do to the fact that the actuator saturate for a longer period in the case
of the reduced controller, so it was not able to apply as much force as it calculated was

needed.

When the algorithm for the full hybrid was first developed, the network was

allowed to learn a general function of x and u. The results of this are shown in figures 5.7
and 5.8.

Car Position (m)

...

——— teference

---:-- nonfinear u hybrid :
Yo 1 2 3 4 s & 71 8 9
Time (sec)
Figure 5.7 Full hybrid, general function of u, cart positior. plot
5

nonlirear u hybrid {0.0,3.0) (m.)
: control action

E
2
- N tracking emor
=
c : :
< : :
< s :
§ ST
e
€
8 T T B S
3
._é
0 4 5 6 7 8 9
Time (sec)

Figure 5.8 Full hybrid, general function of u, force and position error

Although the pole never fell, the controller still did not follow the refesence path

76

very closely. This controller was actually worse than TDC by itself. The problem arises
because control action is one of the inputs to the network. For a given staie, every possible
control action is associated with a different ertor in the prediction of the next state. In
general, to find the correct control action to achieve the correct state, it is necessary to find
the inverse of the function implemented by the network. In general, this can be a difficult
problem, but since unmodeled dynamics is often a fairly linear function of control, it
should be possible to approximate the function in a given state as a linear function of
control action. In other words, *aking into account the unmodeied dynamics associated
with the control action on the last time step, and assuming the partial derivative of ¥ with
respect to u hasn't changed much, it should be possible to calculate the appropriate u for the
current step. When this idea was implemented, however, it did not maxe any significant
difference. This may have been because the network actually learned ¥ as a nonlinear
function of u. If a function is close to a line but not exactly a line, its derivative at a given
point may be much different from the slope of the line, even if the function is never far
from the line. Learning the nonlinear function then using the slope at some point evidently
did not give enough r aw information to help much. A better approach would be to have
he network learn: the best linear function of u, and then look at the partial derivatives of this
linear function. Of course, W(x,u) could still be a nonlinear function of x, and would only
be constrained to L : a iinear function of u. A network was therefore set up to leam ¥ as a
possibly nonlinear function of ~ and a linear function of u. The above experiment was

repeated using the constrained network, giving the much better results in figure 5.12

5.4 MID-TRAJECTORY SPATIAL NONLINEARITIES

The first set of experiments were intended to test the ability of (e hybnd controllers
in the presence of spatial nonlinearit.es appearing in the middle of the plant's trajertory. In

addition to inherent norlinearitics in the cart-pole sysiem, a further nonlinearity was added

71

by tilting the track 30 degrees in the region from 1 meter 1o 2 meters. In these first
experiments, the cart was commanded to move from its initial position at 0 meters to a final
position at 3 meters while following a desired trajectory through state-space, while not
allowing the pole to fall over. Since it spent relatively little time in the inclined region, and

since it always left that region before it even came close to the final staie, this setup

introduced mid-trajectory spatial nonlinearities.

78

Cart Position (m)

Normalized Control Aciion, Cart Tracking; Emror (m)

— relerence

Time (sec)

Figure 5.9 Plain TDC, from 0 to 3 meters

— - v

reducad TDC [0.0,3.0} (m) :
—— onhiotaction
------ tracking errof

4 5 5 7 e
Time (sec)

Figure 5.10 Plain TDC, force and position error

79

= /1,, -y C il TDC[0.0,3.9) (m)
g z TN . —— coniol action
' : A ' . wewee- tracking eror
% 0_5 ,,. U T ': E
5 o ;
S. R W N , mvw-::—-::—g—
3 — LT
e NI
g
3 ST 70 ' FEUUOS SUUUUPUURE SORDUPUPRE UUUUUUIS SAUSUUURE SOROO
%
2 4 5 6 7 8 9

Time (sec)

Figure 5.11 Plain TDC, force and position errcr

Figure 5.9 demonstrates the difficulty of this control task for TDC alone without
learning. Both the reduced and full versions of TDC are able to baiance the pole, but they
do not follow the desived trajectory very closely. For the reduced version, figure 5.10
shows that there were not very large errors in the car: positicn until the actuator staited to
saturate at ~10N. If it could have applied more than that level of force, it might have doue
better. The fuli TDC had equally bad errors, but did not even attempt to apply mare force

than was possible.

Figures 5.12, 5.13, and 5.14 depict the same experiment, but with the liybrid

controller.

o e M

...

Cart Position {m)

: : : ¢ —— relerence :
Sl R full hybrid D -
: : : T e reduced hybrid

Tine {(sec)

Figure 5.12 Hybrid, from 0 to 3 meters

 reduced hybrid [0.0,3.6] (m) :
. -——— control action -

: : : : D eeeems tracking ermor
osl B b

SR Lo G-~y

Norm:aiized Contro: Action, Cart Tracking Error (m)

0 1 2 3 4 5] 7 8 9
Time (sec)

Figure 5.13 Hybrid, from 0 to 3 meters, force and posi.icn eitor

1 i = K] .
full hybrid [0.0,3.0} (m)
control action
------ tracking error
0.5 .

Normaiized Control Action, Cart Tracking Error (m)

Time (sec)

Figure 5.14 Hybrid, from 0 to 3 meters, force and position error

With the aid of learning, the controllers performed extremely well. The reference
and actual trajectories were almost completely on top of each other, and appear to be a
single curve. The full hybrid is comparable to the reduced version, although the reduced
version tracked the reference slightly better. It is interesting that although the full TDC
attempted to use less force than the reduced TDC, the full hybrid used more than the
reduced hybrid. In fact, the full hybrid tends to oscillate in its use of force, even thcugh
the cari itself did not visible oscillate.

The experiments in this section demonstrated three things. First, an adaptive
controller can be improved by a great amount when used in a liybrid with a }eaming
system. Second, in some cases, such as the reduced canonical form here, simply leaming
unmodeled dynamics is enough to give accepiable performance. In other cases, such as in
the fulk fonm (noncanonical), the performance is not very us2ful unless both the value and

the partiais of the learned funciion are used and the network itself is modified for this use.

82

5.5 TRAJECTORY-END SPATIAL NONLINEARITIES

The simulations in sections 5.3 and 5.4 were all conducied while coramariing the
cart to move from 0 meters to 3 meters. Since the unexpected tilt in the track was be ‘ween
1 and 2 meters, the learning system was mainly required during the brief period shar the
track was on the incline. Any errors inwoduced ino the state during that period can ue
handled after the plant has moved on to a vegion where its a priori model is more correct.
A more difficult problem occurs when the cart is commanded t¢ move from 0 meters to 1.3
meters. Then the spatial nonlinearities are irnportant at the end of the trajectory, when the
cart should be decelerating and settling in on the final state. This section compares the
behavior of the the canonical and non-canonical TDC and hybrid controllers in this more
difficult situation.

Figures 5.18, 5.19, and 5.20 show plain TDC trying to move the cart from G to 1.3
meters. Both controliers are fine until they reach the edge of the incline at 1 meter. At this
point they are trying to decelerate since they are near the goal. The unexpected acceleration
causes the pole to fall back, and the cart must then back vp past the edge to keep it from
falling. This sets up the oscillations around the 1 meier mark which are visible in the
figures. The reduced canonical form TDC eventally allows the pole to fall over, while the
full TDC eventually reaches the goal, but only afier 10 seconds of oscillarions. This is
exactly the kind of situation for which the integration with the leaming sysiem would be
expected to be most valuable.

Figures 5.15, 5.16, and 5.17 show the hybrid controllers performing much better

on the same problem. Notonly is the performance betier, but it is accomplished using less

force, and suturating less often.

83

Cant Position (m)

05

€
g
%
%
L&)
g O
b
8
3
L!‘g
E
$

2 IR x, fu!lhybfid

..

—— reference

------ teduced hybrid

Time (sec)

Figure 5.15 Hybrid, from 0 to 1.3 meters

0.6 1

— —

reduced hybrid [0.0,1.3} (m)
¢ - conteol action
------ tracking efror

T T T T T

Time (sec)

figure 5.16 Hybnd, from 0 to 1.3 meters, force and position error

84

tull hybrid [0.0,1.3] ()
——- contvol action
------- tracking error

Nt
»n

) e . TN
b g .‘a‘%\.\.,_.\.\?.‘;‘;u\;.’ LT he Bt N

N Y Y P e e — e

- ~——ran Y,

..

Normalized Control Action, Cart Tracking Error (m)
(=]
1
i

Time (sec)

Figure 5. © - rid, ‘rom 0 to 1.3 meters. force and position error

14 —— — -

120 ;//;' |
: : :‘| ' : NN : : ;

..

Cart Position (m)

Time {sec)

Figw: 518 Pi. in TDC, from 0 .0 1 © meters

s
i
]
]

Normalized Control Action, Cart Tracking Eno. {m)

]

; reduced TDC [0.0,1.2) (m) :

—— control action

...... tracking error
Time (sec)

Figure $.19 Plain TDC_ from O to 1.3 meters, force and position error

E 1 : M] ‘.l‘ N N
‘g' : I MR full TDC[0.0,5.3] i)
Ay : : &n i\ ~—— control action
2 S tracking efror
§ 05 r ..
g - A
. ! .

(5] - : : ll
< - L0 SO | OO SO PR
g a \ ;
3 z | ';
g 1Y% PETOTOUORRUIUUPIIDEIPPRTS INPURN SRR | S SO P
E z z z
-g : l\ : \ :
Zo 3 - : \ N

] 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 5.20 Plain TDC, from 0 to 1.3 meters, force and position error

In this problem, the full hybrid follows the reference more closciy and overshoots

86

fes. than the reduced hybrid. It is not surprising that the full controller is better than the

reduced one in this case but not in the case of moving from O 10 3 meters. When ihe
nonlinearity orly affected the trajectory for a brief pericd in the middle, any leaming system
which could predict that nonlinearity at all could do a good job. However, in the more
demanding problem of stopping the cart on the incline near the ecge, the exact nature of the
nonlinearities on the slope becomes more importasnt. In this case it is more important io get

better estimates of the effect of control on state, by using the partial derivatives of the

function which was learned.

5.6 TRAJECTORY-START AND TRAJECTORY-END NONLINEARITIES

It has bcen shown above that there is a difference in performance caused by using
the partial derivaiives in the hybrid. This difference is more pronounced when the
transition in or out of he tilted region occurs near the end of the trajectory, since that is the
point that the cart is starting to slow down and settle in to the correct position. It might be
expected that the difference would be even more visible if the cart went over the edge of the
tilted region both near the beginning of the run and near the end of the run. This was tested
by commanding the cart to move from 1.8 meters to 2.3 meters. This trajectory is short, so
when the cart crosses the boundary of the tilted region, this event is both near the start of
the run and near the end of it. Figures 5.21, 5.22 and 5.23 compare the behavior of the

reduced and full hybrid controllers. The commanded path was from 0.8 meters to 1.3

meters.

87

1.4

13} CRRTPR.

1.2

TICR TP SSPPPTNED ""/7','"'2' et TR N R e

Cart Position (m)

Y 7 A - SR S S) S

. : : : . —— refarence :
0.8 s b L Lol R {ull hybrid S
: : : : G teduced hybrid

07

o —

1 . 3 4 5 6 | 7 8
Time (sec)

Figure 5.21 Hybrid, from .8 to 1.3 meters

 reducad hybrid [0.8,1.3) (m) :
© ——~ conirol action

: E 3 e tracking error
08) i U A e e

SN e -

Normalized Control Action, Cart Tracking Error {m)
s
4
i
[}
4
!

4 5 6 7 8
Time (sec)

Figure 5.22 Hybrid, from .8 10 1.3 meters, force and position error

88

full hybrid {0.8,1.3) (m)
coniiol action

3
g
w
@ : : : o L e tracking error
'.§ 086l.......... SR L SO R ST S SR
; T T T
€ O N T e
B
E
8 085} i
®
N
E E
S 1 : L : : : : : :
0 1 2 3 4 5 6 7 8 9

Time (sec)
Figure 5.23 Hybrid, from .8 to 1.3 meters, force and position error

As expected, the incorporation of the partial derivative information has a more
dramatic effect here than it did in the previous probicms. Figure 5.21 shows no overshoot
at all for the full hybrid, as compared to a large overshoot for the reduced hybrid. As

before, the force applied by the full hybrid was greater than the force applied by the
reduced controller.

89

L 1t Position {m)

Normalized Control Action, Cart Tracking Error (m)

o
/,-—-A'Ld’\: -
N .
..... S D A
|
A]
................................... R B L RIS IR
b
........ L A S
I —— reference
..................... ‘ cammmm U TOC
.-'\ ----- reduced TDC
........................... I‘
\
|
- I : : : :
4 5 6 7 8
Time (sec)

Figure 5.24 Plain TDC, from .8 to 1.3 meters

: /
[
: {
..... \......:....,‘...A-.y......,.-.v........a..........

:]
Lo
S
I

N/

RER SO OO U SR b
: © teduced TDC [0.8,1.3] (m) °

¢ —— controlaction
------ tracking error

5 6 7 8
Time (sec)

Figure 5.25 Plain TDC, from .8 to 1.3 meters, force and position error

ull TDC{0.8,1.3] (m)]
——— control action ¢
------ tracking error

. ‘

..

..

Normalized Control Activn, Cart Tracking Efror (m)

Time (sec)

Figure 5.26 Plain TDC, from .8 to 1.3 meters, force and position error

The performance of the hybrid is more impressive when compared with the result
of plain TDC, as shown in figures 5.24, 5.25, and 5.26. Not only were the oscillations
extreme, but the pole actually fell over aiter 5 or 6 seconds.

The same experiment was repeated commanding the controller to go from 1.3
meters to 1.9 meters. This ensured that tht entire irajectory was on the inclined regicn of

the track, and so the learning component was very importani. The performance of the

hybrid is shown in figures 5.27, 5.28, and 5.29.

Cart Position (m)

Normmalized Contro: Action, Cart Tracking Error (m)

14

............................ hld,z_:l»: AL Anhsapag- L ; I
. . . C T~ -t e
. N
‘. / T R R Lt e e e

...

..

- : : : ¢ —— relerence :
..._.:_;...........: :.:..........:. 'u"hybﬁd :
: : : [T PR reduce. 3 hybiid

0 1 2 3 4 € 6 7 8 9

Figure 5.27 Hybrid, from 1.3 to 1.9 meters

0.5

v

reduced hybrid {1.3,1.9) (m}
—— control action
------ tracking error

..

Time (seq)

Figure 5.28 Hybrid, from 1.3 to 1.9 meters, force and position error

92

or {m}

full hybrid {1.3,1.9] (m)
ocontred action

2 : : : : L emeems tracking efror
% 0851 DRI S VORI TR b e, e
R
©
g 0_,\,_.._:_...“.._.._;.a:.;,._. e A AT L T ST T v e LW o o e e o s
?
€
S
®
N
g _1 N N N N . N : N
0 1 2 3 4 5 6 7 8 9

Time (sec)
Figure 5.29 Hybnid, frecm 1.3 to 1.9 meters, force and position error

The value of the extra partial derivative information in the full hybrid controller is
unusually clear in figure 5.27. The full hybrid gives very acceptable performance, while
the reduced hybrid actually gees into a limit cycle which continues indefinitely. This is due
to the fact that small ervors made near the cdge of the incline tend to cause the cart to go
across the boundary, thus greatly increasing the errors and incurring further crossings and
further errors. The final results, in figure 5.30, 5.31, and 5.32, are the graphs for the

same experiment with just plain TDC and no learaing.

93

— -
..

Cart Position (m)

) .S SO S S ol TDC I

1.2

Time (sec)

Figure 5.30 Plain TDC, from 1.3 t0 1.9 meters

© reduced TDC [1.3,1.9) (m)
—- control action

: : : ': R tracking error
051 O SR e S P ORI

. . P . : . .
Qb =S g T e it . D o W s S U DU UG S

DN [P U WS R N O SR O S

Normalized Conitrol Acticn, Cart Tracking Error (M)

Time (sec)

Figure 5.31 Plain TDC, from 1.3 to 1.9 meters, force and position error

94

ull TDG [1.3,1.9] (m)
control action
------ tracking errof

0.5

Normalized Control Action, Cart Tracking Error (m)
o
[
1
)
|
)1
d
'
e
I3
v
H
4
!
K
N
Ny
1
ot
¥
‘0
A
M)
M3
!

0 1 2 3 4 5 6 7 8 9
Time (sec)

Figure 5.32 Plain TDC, from 1.3 to 1.9 meters, force and position error

Sections 5.1 through 5.4 have explored several different approaches to combining
learned information with the adaptive controller. Using partial derivatives in the equation
seemed to be helpful, but only if the network was constrained to learn functions linear in x
and nonlinear in 4. Using the reduced canonical fcm had the advantage of allowing the
network to learn a2 function with one output instead of four, and worked weil enough that
the partial derivatives were not needed. This system worked better for computation delays
and actuator dynamics, and worked equally well in the presence of noise. Overall, the full
hybrid vsing partial derivatives tended tc be the most effective controller, especially when

the trajectory of the plant was largely in the region of greatest unmodeled dynamics.

95

5.7 CGMPARISON OF CONNECTIONIST NETWORKS USED

5.7.1 Sigmoid

The network used in most of the above experiments was a Backpropagation, 2
hidden layer, sigmoid network. Each of the inputs and outputs of the network were scaled
before entering and after leaving it, so that each signal would vary over a range of unit
width, and the network would give equal preference to errors in each output. After trying
several different learning rates, it was found to learn best with a rate of 0.005. The
following graph shows the learning curve for the network while learning the function
W (x,u), where ¥ was a nonlinear function of both x and u. The network output V¥ is a
four element vector with one element for each of the four elements of state. The graph

shows the base 10 logarithm of the error in the network's output as a function of training

cycle.

96

Semllog Plot of Error Durlng Learning

Mezn sgsared error
{% of funcrlon range)

1 TyyW e A AT T et e L°g10(lhei3)
A AAR | |- ot
S 1 .
\‘\&HNW’?\/\ - L 0g10(x dot)
1 "N' l‘,"c' \u;h'f oA B CEEEEEE Log 10{theta dot)
1.5% v : .
0] 2 3 4

Number of tralning examples (miltlons)

Figure 5.32

Even though each point in the curve is the average error in the output over a period
of 400 training points, the curve still appears very noisy. This noise tends to cause the
network to forget what it has learned unless the leamning rate is fairly low, and so this noise
is probably the reason that a learning rate of 0.005 was the largest learning rate that
converged to a local minimum. Higher learning rates changed the weights so much on
every step they changed enough to forget previously learned information. Lower leaming
rates caused the network to learn even more slowly than in figure 5.32. The training period
shown in the figure took approximately 63 hours to run on a Macintosh IIfx. Figure 5.33
shows a 3 dimensional slice of the 6 dimensional surface learned. In the figure, the three

ciements of state not shown are held at zero.

97

Figure 5.33

The figure shows each element of ¥ as a separate surface, with all heights scaled to
fitin the cube. The horizontal axis is the control action u, and the diagonal axis is the cart
position, x. The function is clearly nonlinear and widely varying in bcth of these
dimension, although it varies little along the other dimensions which are not shown.

As TDC generated new training points, these were stored in a buffer. The network
was trained with points randomly drawn from this buffer. This was to ensure that the
network would not have problems with receiving a long string of training poinis all from
the same region, causing it to forget other regions it had already learned. Despite this
random buffer, the network still leamed very very slowly.

.y A ccntroller based on this would need one of three things 1o practical. First, it

. ' conld have special hardware to speed up the leamning. Second, it might be in a situation

98

where long learning times are acceptable. If a factory rob:t can leam to adjust to normal
wear within a few days, then it should be able to learn the unmodeled dynamics faste: than

it changes. Third, the algorithm ir. the network might be modified to allow faster leaming.

This third approach was taken here.
5.7.2 Sigmoid with a Second Order method (Delta-Bar-Delta)

One attempt to speeding learning was to apply a pseudo-newton method to the
learning within the sigmoid network. Delta-Bar-Delta was ~hosen because it requires very
little exira computation time, and it has compared favorably with a number of other
methods. Unfortunately, comparisons between methods for speeding !carning are often
done with benchmark problems that do not represent the problem here. People ofien
compare learning speeds for learning an XOR function or a multiplexor function. These
can be difficult problems fer a network to learn, but the network has the advantage t'.at the
set of training points is finite and small, so it is not unreasonable to change weights only
after each cycle ihrough ali the training data. Leaming a function defined over a real vector
is more difficult, since there is an infinite set of training points. The function tended to ve
smooth and have fev. wrinkles, -vhich meant that there was a large amount of redundancy
in the data which the learning algorithm shoula be able to take advantage of. The function
also contained discontinuities, however, (at the boundaries of the tilied track), so the
network needed to be able to handle that. All of these factors combined yielded a prcblem
which was slow for Backpropagation alone to leam, but should have been leamable
quickly by other lecarning methods.

When Delta Bar Delta was first applied, it immediately set all of the local learning
1.:ics 1o zero, causing the weights to freeze. This was because it worked by comnparing the
current partial derivative of error with respcct to a given weight with an exponential average
of recent values of this derivative. Since this was being done after every training point, it

saw the noise in the training data and interpreted that as rapidly changing sigas in the error

99

derivatives. Tt responded to that by repeatedly decreasing alf of the local leaming rates.

This problem arose because Delta Bar Delta was not being used in an epoch training
mode as it had been designed for. The apparent solution was to calculate two exponentially
smoothed averages of the error partials. if these two averages had diffeicat tme constants,
then comparing them would be like comparing the current true derivative with slightly older
true denvatives.

The vailues for these time ccistants were chosen heuristically. Looking at the
leaiming curve for normal Backpropagation showed that the errors were noigy, but in a 500
training point period a "representative sample” of training points was probably being seen.
The short term average was therefore chosen so that 80% of the average was determined by
the last 500 training points. The long term average was then chosen to be S times slower,
basing 80% of its value on the last 2500 training points. In normal Delta Bar Delia, the
learning rate is increased by a constant every time the current derivative has the same sign
as the long term derivative average. Since this variation would update leamning rates about
S00 times more often, the rate of increase for learning rates was set 500 times smaller than
is suggested for normal Delta Bar Delta. Similarly, when learning rates are decreased, the
decrease is done exponentially by dividing by a constant each time. Since the modified
Delta Bar Delta would be expected to divide by this constant 500 times as often, the 500th
root of the suggested constant was used.

There are two novel ways that Delta Bar Delta can fail. 1f local learning rates are
increased too often, then they get very large, and weights in the network can start to blow
up. On the other hand, if local learning rates are decreased too often, then they rapidly
approach zero, and the weights freeze. If the local learning rates stay in a reasonable range,
then Delta Bar Delta can succeed or fail in the same manner as Backpropagation, although
hopefully it reaches the final state faster.

In experimenting with Delta Bar Delta, every run either had exploding weights or

vanishing learning rates. Given the very noisy training data that the network was exposed

100

to, I was unable to find a useful set of parameters for Delta Bar Delta. It is, of course,
pcssible that such a set of parameters exists, but after repeated tries " could not find them.
Perhaps Delta Bar Delta would work better if all the local leamning rates were normalized on
each time step to keep a constant average value. Perhaps some other heuristic might be

applied. Itis not immediately clear what would be the best way to deal with this problem.

101

=0

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY AND CONCLUSIONS

This thesis has described a new method for integrating an indirect adaptive
controller with a learning system to form a hybrid controller, combining the advantages of
cach system. When a learning system is trained with the estimates found by the adaptive
controller, the hybrid system reacts more quickly to unmodeled spatial nonlinearities in the
plant. This system follows a reference trajectory better than the adaptive controller alone,
but it can still be improved upon. By using a connectionist system to learn the function, it
is easy to calculate the partial derivatives of that function, whick in tumn allows better
estimates of unmodeled dynamics, and better estimates of the effect of control action on
state. This modified controller performed better than zither the adaptive controller alone or
the original hybrid system.

The feedforward, sigmoid leaming system was able to learn the required functions
accurately, but he the leaming tended to be slow. The problem of slow convergence is
widely recognized and is dealt with by methods such as Delta-Bar-Delta, which speed
learning a great deal in published experiments. Unfortunately, those problems used for the
comparisons usually involve small sets of training examples. The leaming problem which
arose in this thesis theoretically required an infinite training set. In practice, Delta-Bar-
Delta was found to be very sensitive to the choice of parameters. Even modifying Delta-
Bar-Delta to use iwo traces instead of one did not solve this problem, and it actually
iniroduced another parameter which had to be chosen. Therefore methods for speeding

convergence on small test problems do not appear to scale as well as commonly thought.

102

6.2 RECOMMENDATIONS FOR FUTURE WORK

The desired reference trajectory used in these experiments was chosen manually to
give fairly fast response while still being achievable with the 10 Newton force constraint on
the controller. It would be de-irable to to automate the choice of reference, and this may be
possible. The reference trajectory could start off as a pow. -ontroller which is achievable
without using much force. It could then be slowly improved automatically until the
actuators saturate, thus finding the best reference which can be matched by this hybrid
controller architecture. The reference could even be a function of state, stored in a separate
connectionist network.

‘The learning systems used here learned very good approximations, but the learning
tended to be slow. The Delia-Bar-Delta algorithm improves the rate of convergence for
small sets of training points, but was not effective for leaming as part of a hybrid control
system, even after being modified. It tended to be too sensitive to the choice of parameter.
Leamning based on folicwing the first derivative should be faster if accurate measurements
of the seconds derivative can be found, so a system such as Delta-Bar-Delta should be
useful if it can automate the choice of parameters, perhaps based on an estimate of how
accurate its second derivative ¢stimates are. Further research should focus on this problem,

perhaps by measuring the standard deviation of the individual measurements to form an

estimate of the accuracy of their average.

103

>

[(Ast83)

[(BB90]

[BF90;

[Bar89]

(BS90]

[BSAGS3]

(BSW89]

[D'A88]

[FGG90)

(Fu86]

[GF90j]

IHW89]

[Jac91}

BIBLIOGRAPHY

Asirdm, K., "Thecry and Application of Adaptive Control - A Survey,”
Automatica, Vol. 19, No, §, 1983.

Baird, L. and W. Baker, "A Connectionist Learning System for Nonlinear

Control," Proceedings, AIAA Conference on Guidance, Navigation, and
Control, Portland, OR, August, 1990.

Baker, W. and J. Farrell, "Connectionist Learning Systems for Control,"
Proceedings, SPIE OE/Boston ‘90, (invited paper), November, 1990,

Barto, A., "Conncctionist Learning for Control: An Overview," COINS
Technical Report §9-89, Department of Computer and Tnfonmnation Science,
University of Massachusetts, Amherst, September, 1989,

Barto, A.,, and S. Singh, "Reinforcement Learning and Dynamic
Programming," Proceedings of the Sixth Yale Workshop on Adaptive and
Learning Systems, New Haven, CN, Avgnst, 1990,

Barto, A., R. Sutton, and C. Anderson, "Neuronlike Adaptive Elements That
Can Solve Difficult Learning Control Problems," IEEE Transactions on

Sysgtems, Man, and Cybernetics, vol. SMC-13, No. 5, September/QOctober
1983.

Barto, A., R. Sutter, and C. Watkins, "Leamning an¢ Sequentdal Decision
Making,” COINS lechnical Report 89-95, Dicpartment of Computer and
Information Science, University of Massachusetts, Amherst, September, 1989,

D'Azzo, J., Linear Control System Analysis & Design: Conventional and
Modern, McGraw-Hill, New-York, 1988.

Farrell, J., Goldenthal, W., and K. Govindarajan, "Connectionist Learning
Control Systems: Submarine Heading Control,” Proceedings, 29th 1EEE
Conference on Decision and Control, December, 1990.

Fu, K., "Learning Control Systems - Review and Outlook,” JEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-8, No. 3, May, 1986.

Goldenthal, W. and J. Farrell, "Application of Neural Networks to Automatic

Control," Proceedings, AIAA Conference on Guidance, Navigation, and
Control, August, 1590,

Homik, K., and M. White, "Multilayer Feedforward Networks are Universal
Approximators," Neural Networks, Vol. 2, 1989.

Jacobs, R., "Increased Rates of Convergence Through Learning Rate

{Jam90j

[Jorg8]

{Klo88]
[LeC87]

(MC68]

{Mil91]

[MP69]
[NW8g9]

(Pa183)
[Par82]
[Ros62]

[RZ36]

[RHWE6]

[Sain67]

[Sam59]

Adaptation,” Neural Networks, 1,2, p. 295-301, 1991.

Jameson, J., "A Neurocomputer Based on Model Feedback and the Adaptive

Heuristic ntic,” Proceedings of the International Joint Conference on Neural
Nerworks, 1990,

Jordan, M., "Supervised Learning and Systems with Excess Degrees of

Freedom,” Technical Report COINS TR 88-27, Massachusetts Institute of
Technology, 1988.

Klopf, H., "A Neuronal Model of Classical Conditioning,” Psychobiology,
vol. 16 (2), 85-125, 1988.

LeCun, "Modeles Connexionnistes le I'Apprentissage,” Ph.D Thesis,
Universite Pierre et Marie Curie, Paris, 1987.

Michie, D., and R. Chambers, "Boxes: an Experimen: in Adaptive Control,”

Machine Inteiligence, vol. 2, E. Dale and D). Michie, Eds., Edinburgh,
Scottland: Oliver and Boyd I.td., 1968.

Millington, P., "Associative Reinforcement Learning for Optimai Control,”
Master's Thesis, Massachusetts Institue of Technology, 1991.

Minsky, L. and S. Papert, Perceptrens, MIT Press, Cambridge, MA, 1969.

Nguyen, D., and B. Widrow, "The Truck Backer-Upper: An Exarnple of Self-
Learning in Neural Networks,” Proceedings ofp the International Joint
Conference on Neural Networks, 1989.

Palm, W., Modeling, Analysis, and Control of Dynamic Systems, John Wiley
& Sons, New York, 1983.

Parker, D., "Learning Logic," Invention Report, S81-64, File 1, Office of
Technology Liscensing, Stanford University, 1982.

Rosenblat, F., Principles of Neurodynamics, Spartan Books, Washington,
1962,

Rumelhart, D. and D. Zipser, "Feature Discovery by Competitive Learning,”
Parallel Distributed Processing: Explorations in the Microstructure of

Cognitior, vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Press,
Cambridge, MA, 1986.

Rurnelhart, D., G. Hinton, and R. Wiiliams, "Learning Intemal Representation
by Error Propagation,” Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, vol. 1, Rumelhart, D., and J. McClelland, ed.,
MIT Press, Cambridge, MA, 1986.

Samuel, A., "Some Studies in Machine Learning Using the Game of Checkers

IT - Recent Progress," IBM Journal of Research nad Development, 11,601-617,
1967.

Samuel, A, "Some Studies in Machine Learning Using the Game of
Checkers,” IBM Journal of Research and Development, 3, 210-229, 1959,

{Sim87]

(Sut90)

[Sut88]

[Wat89]

[Wer89)

[(Wer74]

(Widg€9]

(WZ85]

[WB90]

[Wil88]

(Y190}

reprinted in Computers and Thought, A. Feigenbaum and J Feldman,
ed. . McGraw-Hill, New York, 195%.

Simpson, P., “A Survey of Artificial Neural Systems"," Technical Document
1106, Naval Ocean Systems Center, San Diego, CA, 1987.

Sutton, R., "Artificial Intelligence by Approximaiing Dynamic
Programmming," Proceedings of the Sixth Yale Workshop on Adaptive and
Learning Systems, New Haven, CN, August, 1990.

Sutton, R., "Learning to Predict by the Methods of Temporal Differences,”

Machine Learning, Kluwer Academic Publishers, Boston, MA, vol. 3: 9-44,
1988.

Watkins, C., "Learning “rom Dclayed Rewards," Ph.D. thesis, Cambridge
University, Cambridge, England, 1989.

Werbos, P., "Backpropagation and Neurocontrol: A Preview and Prospectus,”
Proceedings of the International Joint Conference on Neural Networks,
Washington, D.C,, pp. 209-216, vol. 1, 1989.

Werbos, P., Beyond Regression: New Tools for Prediction aad Analvsis in the
Behavioral Sciences, PhD Dissertation, Harvard University, 1974,

Widrow, B., "ADALINE and MADALINE," Proceeriings of the International
Joint Conference on Neural Networks, 1989.

Williams, J. and D. Zipser, "A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks," Neural Computation, 1, 270-280, 1989.

Williams, R. and L. Baird, "A Mathematical Analysis of Actor-Critic
Architectures for Learning Optimal Controls Through Incremental Dynamic
Programming,” Proceedings of the Sixth Yale Workshop on Adapnve and
Learning Systems, New Haven, CN, August, 1990,

Williams, R., "Towards a Theory of Reinforcement Learning Connectionist

Systems," Technical Report NU-CCS-88-3, College of Cormputer Science,
Northeastern University, July, 1988.

Youcezf-Toumi, K. and O. Ito, "A Time Delay Controller for Systems with

Unknown Dynamics," ASME Journal of Dynamic Systems, Measurzment, and
Control, Vol. 112, March, 1990.

